Skip to main content

Photosystem I Electron Transfer Reactions–Components and Kinetics

  • Chapter
Oxygenic Photosynthesis: The Light Reactions

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 4))

Summary

All oxygenic photosynthetic organisms contain a membrane protein complex, known as Photosystem I, that catalyzes a light-induced transfer of electrons from reduced plastocyanin to ferredoxin. This complex contains several bound electron carriers that are involved in the initial charge separation and stabilization. These carriers include the reaction center chlorophyll, P700, which undergoes oxidation in the light, and a number of compounds that serve as electron carriers in what is now believed to be a sequence of electron transfer events: a monomeric chlorophyll a molecule is the initial electron acceptor, a phylloquinone molecule is the second electron acceptor and a series of bound iron-sulfur clusters then function as terminal electron acceptors. The properties of these electron carriers and recent evidence supporting their proposed roles are described and an attempt is made to present a unified picture of our understanding of the role of these individual components. The kinetic sequence of the electron transfer events is then considered in detail. After the discussion of these bound electron carriers, the reduction of ferredoxin by the Photosystem I complex is described and the role of this soluble electron carrier in catalyzing a cyclic transfer of electrons around Photosystem I is considered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andersen B, Koch B and Scheller HV (1992) Structural and functional analysis of the reducing side of Photosystem I. Physiol Plant 84: 154–161

    Article  CAS  Google Scholar 

  • Arnon DI and Chain RK (1975) Regulation of ferredoxin-catalyzed photosynthetic phosphorylation. Proc Natl Acad Sci USA 72: 4961–4965

    PubMed  CAS  Google Scholar 

  • Arnon DI, Tsujimoto HY and McSwain BD (1967) Ferredoxin and photosynthetic phosphorylation. Nature 214: 562–566

    PubMed  CAS  Google Scholar 

  • Biggins J (1990) Evaluation of selected benzoquinones, napthoquinones and anthraquinones as replacements for phylloquinone in the A1 acceptor site of the Photosystem I reaction center. Biochemistry 29: 7259–7264

    Article  PubMed  CAS  Google Scholar 

  • Biggins J and Mathis P (1988) Functional role of vitamin K1 in Photosystem I of the cyanobacterium Synechocystis 6803. Biochemistry 27: 1494–1500

    Article  PubMed  CAS  Google Scholar 

  • Biggins J, Tanguay NA and Frank HA (1989) Electron transfer reactions in Photosystem I following vitamin K1 depletion by ultraviolet irradiation. FEBS Lett 250: 271–274

    Article  PubMed  CAS  Google Scholar 

  • Bock CH, van der Est AJ, Brettel K and Stehlik D (1989) Nanosecond electron transfer kinetics in Photosystem I as obtained from transient EPR at room temperature. FEBS Lett 247: 91–96

    Article  CAS  Google Scholar 

  • Boekema EJ, Wynn RM and Malkin R (1990) The structure of spinach Photosystem I studied by electron microscopy. Biochim Biophys Acta 1017: 49–56

    CAS  Google Scholar 

  • Bonnerjea J and Evans MCW (1982) Identification of multiple components in the intermediary electron acceptor complex of Photosystem I. FEBS Lett 148: 313–316

    Article  CAS  Google Scholar 

  • Brettel K (1988) Electron transfer from A 1 to an iron-sulfur center with t1/2=200 ns at room temperature in photosystem I. FEBS Lett 239: 93–98

    Article  CAS  Google Scholar 

  • Bruce BD and Malkin R (1988a) Subunit stoichiometry of the chloroplast Photosystem I complex. J Biol Chem 263: 7302–7308

    PubMed  CAS  Google Scholar 

  • Bruce BD and Malkin R (1988b) Structural aspects of photosystem I from Dunaliella salina. Plant Physiol 88: 1201–1206

    CAS  PubMed  Google Scholar 

  • Cammack R, Ryan MD and Stewart AC (1979) The epr spectrum of iron-sulphur centre B in Photosystem I in Phormidium laminosum. FEBS Lett 107: 422–426

    Article  PubMed  CAS  Google Scholar 

  • Chamarovsky SK and Cammack R (1982) Oxidation-reduction potential of iron-sulphur centre X in Photosystem I. Photobiochem Photobiophys 4: 195–200

    Google Scholar 

  • Chitnis PR and Nelson N (1991) Photosystem I. In: Bogorad L and Vasil IK (eds), The Photosynthetic Apparatus: Molecular Biology and Operation, pp 177–224. Academic Press, New York

    Google Scholar 

  • Cleland RE and Bendall DS (1992) Photosystem I cyclic electron transport: Measurement of ferredoxin-plastoquinone reductase activity. Photosynth Res 34: 409–418

    Article  CAS  Google Scholar 

  • Evans MCW and Heathcote P (1980) Effects of glycerol on the redox properties of the electron acceptor complex in spinach Photosystem I particles. Biochim Biophys Acta 590: 89–96

    PubMed  CAS  Google Scholar 

  • Evans MCW, Reeves SG and Cammack R (1974) Determination of the oxidation-reduction potential of the bound iron-sulfur proteins of the primary electron acceptor complex of Photosystem I in spinach chloroplasts. FEBS Lett 49: 111–114

    Article  PubMed  CAS  Google Scholar 

  • Fenton JM, Pellin MJ, Govindjee and Kaufmann KJ (1979) Primary photochemistry of the reaction center of Photosystem I. FEBS Lett 100: 1–4

    Article  PubMed  CAS  Google Scholar 

  • Fish LE, Kuck U and Bogorad L (1985) Two partially homologous adjacent light inducible chloroplast genes encoding polypeptides of the P700 chlorophyll a protein complex of Photosystem I. J Biol Chem 260: 1413–1421

    PubMed  CAS  Google Scholar 

  • Fujita I, Davis MS and Fajer J (1978) Anion radicals of pheophytin and chlorophyll a: Their role in the primary charge separations of plant photosynthesis. J Am Chem Soc 100: 6280–6282

    Article  CAS  Google Scholar 

  • Golbeck J (1992) Structure and function of Photosystem I. Ann Rev Plant Physiol Plant Mol Biol 43: 293–324

    Article  CAS  Google Scholar 

  • Golbeck JH (1994) Photosystem I in cyanobacteria. In: Bryant DA (ed) The Molecular Biology of Cyanobacteria, pp 319–360. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Golbeck J and Bryant D (1991) Photosystem I. Curr Topics in Bioenergetics 16: 83–177

    CAS  Google Scholar 

  • Golbeck JH and Warden JT (1982) Electron spin resonance studies of the bound iron-sulfur centers in Photosystem I. Photoreduction of center A occurs in the absence of center B. Biochim Biophys Acta 681: 77–84

    CAS  Google Scholar 

  • Golbeck JH, McDermott AE, Jones WK and Kurtz DM (1987a) Evidence for the existence of [2Fe-2S] as well as [4Fe-4S] clusters among FA, FB and FX. Implications for the structure of the Photosystem I reaction center. Biochim Biophys Acta 891: 94–98

    CAS  Google Scholar 

  • Golbeck JH, Parrett KG, Mehari T, Jones KL and Brand JJ (1987b) Isolation of the intact Photosystem I reaction center core containing P700 and iron-sulfur center FX. FEBS Lett 228: 268–272

    Google Scholar 

  • Hastings G, Kleinherenbrink FAM, Lin S and Blankenship RE (1994a) Time resolved fluorescence and absorption spectroscopy of Photosystem I. Biochemistry 33: 3185–3192

    PubMed  CAS  Google Scholar 

  • Hastings G, Kleinherenbrink FAM, Lin, S, McHugh TJ and Blankenship RE (1994b) Observation of the reduction and reoxidation of the primary electron acceptor in Photosystem I. Biochemistry 33: 3193–3200

    PubMed  CAS  Google Scholar 

  • Hauska G, Hurt E, Gabellini N and Lockau W (1983) Comparative aspects of quinol-cytochrome c/plastocyanin oxidoreductases. Biochim Biophys Acta 726: 97–133

    PubMed  CAS  Google Scholar 

  • He W-Z and Malkin R (1994) Reconstitution of iron-sulfur center B of Photosystem I damaged by mercuric chloride. Photosynth Res 41: 381–388

    Article  CAS  Google Scholar 

  • Hervas M, Navarro JA and Tollin G (1992) A laser flash spectroscopic study of the kinetics of electron transfer from spinach Photosystem I to spinach and algal ferredoxins. Photochem Photobiol 56: 319–324

    CAS  Google Scholar 

  • Hiyama T and Fork D (1980) Kinetic identification of Component X as P430: A primary electron acceptor of Photosystem I. Arch Biochem Biophys 199: 488–496

    Article  PubMed  CAS  Google Scholar 

  • Hiyama T and Ke B (1971a) A new photosynthetic pigment, ‘P430’: Its possible role as the primary electron acceptor of Photosystem I. Proc Natl Acad Sci USA 68: 1010–1013

    PubMed  CAS  Google Scholar 

  • Hiyama T and Ke B (1971b) A further study of P430: a possible primary electron acceptor of Photosystem I. Arch Biochem Biophys 147: 99–108

    Article  PubMed  CAS  Google Scholar 

  • Høj PB and Møller BL (1986) The 110 kDa reaction centre protein of Photosystem I, chlorophyll a-protein 1, is an iron-sulphur protein. J Biol Chem 261: 14292–14300

    PubMed  Google Scholar 

  • Holzwarth AR, Schatz G, Brock H and Bittersmann E (1993) Energy transfer and charge separation kinetics in Photosystem I. Part I: Picosecond transient absorption and fluorescence study of cyanobacterial Photosystem I particles. Biophys J 64: 1813–1826

    CAS  Google Scholar 

  • Hootkins R, Malkin R and Bearden AJ (1981) EPR properties of Photosystem I iron-sulfur centers in the halophilic alga, Dunaliella parva. FEBS Lett 123: 229–234

    Article  CAS  Google Scholar 

  • Inoue K, Kusumoto N and Sakurai H (1992) Some properties of iron-sulfur centers in FB-destroyed and FB-reconstituted PS I particles. In: Murata N (ed) Research in Photosynthesis vol I, pp 577–580. Kluwer, Dordrecht

    Google Scholar 

  • Itoh S and Iwaki I (1991) Full replacement of the function of the secondary electron acceptor phylloquinone (vitamin K1) by non-quinone carbonyl compounds in green plant photosystem I photosynthetic reaction centers. Biochemistry 30: 5339–5346

    Article  Google Scholar 

  • Iwaki M and Itoh S (1989) Electron transfer in spinach Photosystem I reaction center containing benzo-, naptho-and anthraquinones in place of phylloquinone. FEBS Lett 256: 11–16

    Article  CAS  Google Scholar 

  • Ke B (1972) The rise time of photoreduction, difference spectrum and oxidation-reduction potential of P430. Arch Biochem Biophys 152: 70–77

    Article  PubMed  CAS  Google Scholar 

  • Ke B and Beinert H (1973) Evidence for the identity of P430 and chloroplast-bound iron-sulfur protein. Biochim Biophys Acta 305: 689–693

    PubMed  CAS  Google Scholar 

  • Ke B, Hansen RE and Beinert H (1973) Oxidation-reduction potentials of bound iron-sulfur proteins of Photosystem I. Proc Natl Acad Sci USA 70: 2941–2945

    CAS  PubMed  Google Scholar 

  • Kojima Y, Hiyama T and Sakurai H (1987a) Effects of mercurials on iron-sulfur centers of Photosystem I of Anacystis nidulans. In: Biggins J (ed) Progress in Photosynthesis Research, Vol 2, pp 57–60. Martinus Nijhoff, Dordrecht

    Google Scholar 

  • Kojima Y, Niinomi Y, Tsuboi S, Hiyama T and Sakurai H (1987b) Destruction of Photosystem I iron-sulfur centers of spinach and Anacystis nidulans by mercurials. Bot Mag Tokyo 100: 243–253

    CAS  Google Scholar 

  • Kok B (1956) Preliminary notes on the reversible absorption change at 705 μm in photosynthetic organisms. Biochim Biophys Acta 22: 399–401

    Article  PubMed  CAS  Google Scholar 

  • Kok B (1957) Absorption changes induced by the photochemical reaction of photosynthesis. Nature 179: 583–584

    CAS  Google Scholar 

  • Krauss N, Hinrichs W, Witt I, Fromme P, Pritzkow W, Dauter Z, Betzel C, Wilson KS, Witt HT and Saenger W (1993) Three-dimensional structure of system I of photosynthesis at 6Å resolution. Nature 361: 326–331

    Article  CAS  Google Scholar 

  • Li N, Zhao J, Warren PV, Warden JT, Bryant DA and Golbeck JH (1991) PsaD is required for stable binding of PsaC to Photosystem I core protein of Synechococcus sp. PCC 6301. Biochemistry 30: 7863–7872

    PubMed  CAS  Google Scholar 

  • Lundell DJ, Glazer AN, Melis A and Malkin R (1985) Characterization of a cyanobacterial PS I complex. J Biol Chem 260: 646–654

    PubMed  CAS  Google Scholar 

  • Malkin R (1984) Diazonium modification of Photosystem I. A specific effect on iron-sulfur center B. Biochim Biophys Acta 764: 63–69

    CAS  Google Scholar 

  • Malkin R (1986) On the function of two vitamin K1 molecules in the Photosystem I electron acceptor complex. FEBS Lett 208: 343–346

    CAS  Google Scholar 

  • Malkin R and Bearden AJ (1971) Primary reactions of photosynthesis: Photoreduction of a bound chloroplast ferredoxin at low temperatures as detected by EPR spectroscopy. Proc Natl Acad Sci USA 68: 16–19

    PubMed  CAS  Google Scholar 

  • Mansfield RW and Evans MCW (1985) Optical difference spectrum of the electron acceptor Ao in Photosystem I. FEBS Lett 190: 237–241

    Article  CAS  Google Scholar 

  • Mansfield RW, Hubbard JAM, Nugent JHA and Evans MCW (1987a) Extraction of electron acceptor A1 from pea Photosystem I. FEBS Lett 220: 74–78

    Article  CAS  Google Scholar 

  • Mansfield RW, Nugent JHA and Evans MCW (1987b) ESR characteristics of Photosystem I in deuterium oxide: Further evidence that electron acceptor A1 is a quinone. Biochim Biophys Acta 894: 515–523

    CAS  Google Scholar 

  • Mathis P and Sétif P (1988) Kinetic studies on the function of AI in the Photosystem I reaction center. FEBS Lett 237: 65–68

    Article  CAS  Google Scholar 

  • Mathis P, Ikegami I and Sétif P (1988) Nanosecond flash studies of the absorption spectrum of the Photosystem I primary acceptor Ao. Photosynth Res 16: 203–210

    Article  CAS  Google Scholar 

  • McDermott AE, Yachandra VK, Guiles RD, Britt RD, Dexheimer SL, Sauer K and Klein MP (1987) Characterization of the Mn-containing O2 evolving complex from the cyanobacterium Synechococcus using epr and X-ray absorption spectroscopy. In: Biggins J (ed) Progress in Photosynthesis Research, vol I, pp 565–568. Martinus Nijhoff, Dordrecht

    Google Scholar 

  • McDermott AE, Yachandra VK, Guiles RD, Sauer, K, Parrett KG and Golbeck JH (1989) An EXAFS structural study of FX the low potential Fe-S center in Photosystem I. Biochemistry 28: 8056–8059

    Article  PubMed  CAS  Google Scholar 

  • Moënne-Loccoz P, Robert B, Ikegami I and Lutz M (1990) Structure of the primary donor in Photosystem I: A resonance Raman study. Biochemistry 29: 4740–4746

    PubMed  Google Scholar 

  • Moss DA and Bendall DS (1984) Cyclic electron transport in chloroplasts. The Q-cycle and the site of action of antimycin. Biochim Biophys Acta 767: 389–395

    CAS  Google Scholar 

  • Nuijs AM, Shuvalov VA, van Gorkom HJ, Plijter JJ and Duysens LNM (1986) Picosecond absorbance difference spectroscopy on the primary reactions and the antenna-excited states in Photosystem I particles. Biochim Biophys Acta 850: 310–318

    CAS  Google Scholar 

  • Oh-oka H, Takahashi Y, Wada K, Matsubara H, Ohyama K and Ozeki H (1987) The 8 kDa polypeptide in Photosystem I is a probable candidate of an iron-sulfur protein coded by chloroplast gene frx A. FEBS Lett 218: 52–54

    Article  CAS  Google Scholar 

  • Oh-oka H, Itoh S, Saeki K, Takahashi Y and Matsubara H (1991) FA/FB protein from spinach Photosystem I complex: Isolation in a native state and some properties of the iron-sulfur centers. Plant Cell Physiol 32: 11–17

    CAS  Google Scholar 

  • O’Malley PJ and Babcock GT (1984) Electron nuclear double resonance evidence supporting a monomeric nature for P700+ in spinach chloroplasts. Proc Natl Acad Sci USA 81: 1098–1101

    Google Scholar 

  • Owens TG, Webb SP, Mets L, Alberte RS and Fleming GR (1987) Antenna size dependence of fluorescence decay in the core antenna of Photosystem I: Estimates of charge separation and energy transfer rates. Proc Natl Acad Sci USA 84: 1532–1536

    PubMed  CAS  Google Scholar 

  • Palace GP, Franke JE and Warden JT (1987) Is phylloquinone an obligate electron carrier in Photosystem I? FEBS Lett 215: 58–62

    Article  PubMed  CAS  Google Scholar 

  • Parrett KG, Mehari T, Warren PG and Golbeck JH (1989) Purification and properties of the intact P700 and FX-containing Photosystem I core protein. Biochim Biophys Acta 973: 324–332

    PubMed  CAS  Google Scholar 

  • Parrett KG, Mehari T and Golbeck JH (1990) Resolution and reconstitution of the cyanobacterial Photosystem I complex. Biochim Biophys Acta 1015: 341–352

    CAS  Google Scholar 

  • Petrouleas V, Brand JJ, Parrett KP and Golbeck JH (1989) A Mossbauer analysis of the low potential iron-sulfur center in Photosystem I. Spectroscopic evidence that FX is a 4Fe-4S cluster. Biochemistry 28: 8980–8983

    Article  PubMed  CAS  Google Scholar 

  • Prisner TF, McDermott AE, Un S, Norris JR, Thurnauer MC and Griffin RG (1993) Measurement of the g-tensor of the P700+ signal from deuterated cyanobacterial Photosystem I particles. Proc Natl Acad Sci USA 90: 9485–9488

    PubMed  CAS  Google Scholar 

  • Rousseau F, Sétif P and Lagoutte B (1993) Evidence for the involvement of PS I-E subunit in the reduction of ferredoxin by Photosystem I. EMBO J 12: 1755–1765

    PubMed  CAS  Google Scholar 

  • Rustandi RR, Snyder SW, Feezel LL, Michalski TJ, Norris JR and Thurnauer MC (1990) Contribution of vitamin K1 to the electron spin polarization in spinach Photosystem I. Biochemistry 29: 8030–8032

    Article  PubMed  CAS  Google Scholar 

  • Rustandi RR, Snyder SW, Biggins J, Norris JR and Thurnauer MC (1992) Reconstitution and exchange of quinones in the A1 site of Photosystem I. An electron spin polarization paramagnetic resonance study. Biochim Biophys Acta 1101: 311–320

    CAS  Google Scholar 

  • Scheller HV, Svendsen I, Møller BL (1989) Subunit comparison of Photosystem I and identification of center X as a 4Fe-4S iron-sulfur center. J Biol Chem 264: 6929–6934

    PubMed  CAS  Google Scholar 

  • Schoeder HU and Lockau W (1986) Phylloquinone copurifies with the large subunits of Photosystem I. FEBS Lett 199: 23–27

    Article  CAS  Google Scholar 

  • Schürmann P, Buchanan BB and Arnon DI (1971) Role of cyclic phosphorylation in photosynthetic carbon dioxide assimilation by isolated chloroplasts. Biochim Biophys Acta 267: 111–124

    Google Scholar 

  • Sétif P (1992) Energy transfer and trapping in Photosystem I. In: Barber J (ed), The Photosystems: Structure, Function and Molecular Biology, pp 471–499. Elsevier, Amsterdam

    Google Scholar 

  • Sétif P and Brettel K (1993) Forward electron transfer from phylloquinone A1 to iron-sulfur centers in spinach Photosystem I. Biochemistry 32: 7846–7854

    PubMed  Google Scholar 

  • Sétif P and Mathis P (1980) The oxidation-reduction potential of P700 in chloroplast lamellae and subchloroplast particles. Arch Biochem Biophys 204: 477–485

    PubMed  Google Scholar 

  • Sétif P and Mathis P (1986) Photosystem I reaction center and its primary electron transfer reactions. In: Staehelin LA and Arntzen CJ (eds) Encyclopedia of Plant Physiology, New Series, volume 19, Photosynthesis III, pp 476–486. Springer-Verlag, Berlin

    Google Scholar 

  • Sétif P, Ikegami I and Biggins J (1987) Light-induced charge separation in Photosystem I at low temperature is not influenced by vitamin K1. Biochim Biophys Acta 894: 146–156

    PubMed  Google Scholar 

  • Shuvalov VA, Dolan E and Ke B (1979) Spectral and kinetic evidence for two early electron acceptors in Photosystem I. Proc Natl Acad Sci USA 76: 770–773

    CAS  PubMed  Google Scholar 

  • Shuvalov VA, Nuijs AM, van Gorkom HJ, Smit HWJ and Duysens LNM (1986) Picosecond absorbance changes upon selective excitation of the primary electron donor P-700 in Photosystem I. Biochim Biophys Acta 850: 319–323

    CAS  Google Scholar 

  • Sieckman I, van der Est A, Bottin H, Sétif P and Stehlik D (1991) Nanosecond electron transfer kinetics in Photosystem I following substitution of quinones for vitamin Kl as studied by time resolved EPR. FEBS Lett 284: 98–102

    Article  PubMed  CAS  Google Scholar 

  • Smith NS, Mansfield RW, Nugent, JHA and Evans MCW (1987) Characterisation of electron acceptors Ao and A1 in cyanobacterial Photosystem I. Biochim Biophys Acta 892: 331–334

    CAS  Google Scholar 

  • Snyder SW, Rustandi RR, Biggins J, Norris, JR and Thurnauer MC (1991) Direct assignment of vitamin K1 as the secondary acceptor A1 in Photosystem I. Proc Natl Acad Sci USA 88: 9895–9896

    PubMed  CAS  Google Scholar 

  • Swarthoff T, Gast P, Amesz J and Buisman HP (1982) Photoaccumulation of reduced primary electron acceptors of Photosystem I of photosynthesis. FEBS Lett 146: 129–132

    Article  CAS  Google Scholar 

  • Thurnauer MC and Norris JR (1980) An electron spin echo phase shift in photosynthetic algae. Possible evidence for dynamic radical pair interactions. Chem Phys Lett 76: 557–561

    CAS  Google Scholar 

  • Trissl H-W, Hecks B and Wulf K (1993) Invariable trapping times in Photosystem I upon excitation of minor long-wavelength-absorbing pigments. Photochem Photobiol 57: 108–112

    CAS  Google Scholar 

  • Turconi S, Schweitzer G and Holzwarth AR (1993) Temperature dependence of picosecond fluorescence kinetics of a cyanobacterial Photosystem I particle. Photochem Photobiol 57: 113–119

    CAS  Google Scholar 

  • Warden JT (1990) Nanosecond spectroscopy of early reduced electron transfer in Photosystem I. Iron-sulfur cluster FX is reduced within 5 nanoseconds. In: Baltscheffsky M (ed) Current Research in Photosynthesis, Vol. II, pp 635–638. Kluwer, Dordrecht

    Google Scholar 

  • Warren PV, Golbeck JH and Warden JT (1993) Charge recombination between P700+ and A 1 occurs directly to the ground state of P700 in a Photosystem I core devoid of FX, FB and FA. Biochemistry 32: 849–857

    PubMed  CAS  Google Scholar 

  • Warren PV, Smart LB, McIntosh L and Golbeck JH (1993) Site directed conversion of cysteine-565 in psaB of Photosystem I results in the assembly of [3Fe-4S] and [4Fe-4S] clusters in FX. A mixed-ligand [4Fe-4S] cluster is capable of electron transfer to FA and FB. Biochemistry 32: 4411–1419

    PubMed  CAS  Google Scholar 

  • Wasielewski MR, Fenton JM and Govindjee (1987) The rate of formation of P700+-A o in Photosystem I particles from spinach as measured by picosecond transient absorption spectroscopy Photosynth Res 12: 181–190

    Article  CAS  Google Scholar 

  • Wynn RM and Malkin R (1988) Characterization of an isolated chloroplast membrane Fe-S protein and its identification as the Photosystem I Fe-SA/Fe-Sn. FEBS Lett 229: 293–297

    Article  CAS  Google Scholar 

  • Yu L, Zhao J, Lu W, Bryant DA and Golbeck JH (1993a) Characterization of the [3Fe-4S] and [4Fe-4S] clusters in unbound psaC mutants C14D and C51D. Midpoint potentials of the single [4Fe-4S] clusters are identical to FA and FB in bound PsaC of Photosystem I. Biochemistry 32: 8251–8258

    PubMed  CAS  Google Scholar 

  • Yu L, Zhao J, Muhlenhoff U, Bryant DH and Golbeck JH (1993b) PsaE is required for in vivo cyclic electron flow around Photosystem I in the cyanobacterium Synechococcus sp. PCC 7002. Plant Physiol 103: 171–180

    PubMed  CAS  Google Scholar 

  • Zanetti G and Merati G (1987) Interaction between Photosystem I and ferredoxin. Eur J Biochem 169: 143–146

    Article  PubMed  CAS  Google Scholar 

  • Zhao J, Li N, Warren PV, Golbeck JH and Bryant DA (1992) Site-directed conversion of a cysteine to aspartate leads to the assembly of a [3Fe-4S] cluster in PsaC of Photosystem I. The photoreduction of FA is independent of FB. Biochemistry 31: 5093–5099

    Article  PubMed  CAS  Google Scholar 

  • Ziegler K, Lockau W and Nitschke W (1987) Bound electron acceptors of Photosystem I. Evidence against the identity of redox center A1 with phylloquinone. FEBS Lett 217: 16–20

    Article  CAS  Google Scholar 

  • Zilber A and Malkin R (1988) Ferredoxin cross-links to a 22 kD subunit of Photosystem I. Plant Physiol 88: 810–814

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Kluwer Academic Publishers

About this chapter

Cite this chapter

Malkin, R. (1996). Photosystem I Electron Transfer Reactions–Components and Kinetics. In: Ort, D.R., Yocum, C.F., Heichel, I.F. (eds) Oxygenic Photosynthesis: The Light Reactions. Advances in Photosynthesis and Respiration, vol 4. Springer, Dordrecht. https://doi.org/10.1007/0-306-48127-8_16

Download citation

  • DOI: https://doi.org/10.1007/0-306-48127-8_16

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-3683-9

  • Online ISBN: 978-0-306-48127-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics