Skip to main content

Part of the book series: Advances in Global Change Research ((AGLO,volume 13))

Abstract

Applications of space-based microwave radiometry to precipitation retrieval is addressed, focusing on model-based inversion techniques and optimal combination with other satellite sensors. Statistical integration of microwave radiometers with space-borne radars and thermal infrared radiometers is sketched. Examples of measurements and products are shown to emphasize the physical background of combined techniques. The concept of the newly approved NASA/NASDA Global Precipitation Mission (GPM), considered to be the Tropical Rainfall Measuring Mission follow-on international space program on precipitation remote sensing, is finally illustrated together with concluding remarks on current status of precipitation retrieval.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adler R.F., G.J. Huffman, and P.R. Keehn, 1994: Global tropical rain estimates from microwave-adjusted geosynchronous IR data. Rem. Sens. Reviews, 11, 125–152.

    Google Scholar 

  • Atlas D., D. Rosenfeld, D.B. Wolff: 1990. Climatologically tuned reflectivity-rainrate relations and links to area-time integrals. J. Appl. Meteor., 3, 1120–1135.

    Google Scholar 

  • Bauer P. and P. Schluessel, 1993: Rainfall, total water, ice water and water vapor over the sea from polarized microwave simulations and SSM/I data. J. Geophys. Research, 98(D11), 737–759.

    Google Scholar 

  • Bauer P. and N.C. Grody, 1995: The potential of combining SSM/I and SSM/T2 measurements to improve the identification of snow cover and precipitation. IEEE Trans. Geosci. Rem. Sens., 33, 252–261.

    Google Scholar 

  • Bauer P., A. Khain, I. Sednev, R. Meneghini, C. Kummerow, F.S. Marzano, and J.P.V. Poiares Baptista, 2000: Combined cloud-microwave radiative transfer modeling of stratiform rainfall. J. Atmos. Sci., 57, 1082–1104.

    Article  Google Scholar 

  • Bauer P., 2001: Over-ocean rainfall retrieval from multisensor data of the tropical rainfall measuring mission. Part I: Design and evaluation of inversion databases. J. Atmos. Oceanic Technol., 18, 1315–1330.

    Google Scholar 

  • Conner M.D. and G.W. Petty, 1998: Validation and intercomparison of SSM/I rain-rate retrieval methods over the continental United States. J. Appl. Meteor., 37, 679–700.

    Article  Google Scholar 

  • Crosson W.L., C.E. Duchon, R. Raghavan, and S.J. Goodman, 1996: Assessment of rainfall estimates using a standard Z-R relationship and the probability matching method applied to composite radar data in central Florida. J. Appl. Meteor., 35, 1203–1219.

    Article  Google Scholar 

  • ďAuria G., F.S. Marzano, N. Pierdicca, R. Pinna Nossai, P. Basili, and P. Ciotti, 1998: Remotely sensing cloud properties from microwave radiometric observations by using a modeled cloud database. Radio Sci., 33, 369–392.

    Google Scholar 

  • Di Michele S., F.S. Marzano, A. Mugnai, A. Tassa, and J.P.V. Poiares Baptista, 2001: Physically-based statistical integration of TRMM microwave measurements for precipitation profiling. Radio Sci., in press.

    Google Scholar 

  • Durden S.L., E. Im, F.K. Li, W. Ricketts, A. Tanner, and W. Wilson, 1994: ARMAR: an airborne rain-mapping radar. J. Atmos. Oceanic Technol., 11, 727–737.

    Article  Google Scholar 

  • Evans K.F., J. Turk, J. Wong, and T.L. Stephens, 1995: A Bayesian approach to microwave precipitation profile retrieval. J. Appl. Meteor., 34, 260–279.

    Google Scholar 

  • Ferraro R.R. and G. F. Marks, 1995: The development of SSM/I rain-rate retrieval algorithms using ground-based radar measurements, J. Atmos. Oceanic Technol., 12, 755–772.

    Article  Google Scholar 

  • Haddad Z.S., S.L. Durden, and E. Im, 1996: Stochastic filtering of rain profiles using radar, surface-referenced radar, or combined radar-radiometer measurements. J. Appl. Meteor., 35, 229–242.

    Google Scholar 

  • Hong Y.C., C.D. Kummerow, and W.S. Olson, 1999: Separation of convective and stratiform precipitation using microwave brightness temperature, J. Appl. Meteor., 38, 1195–1213.

    Article  Google Scholar 

  • Houze R.A., 1981: Structures of atmospheric precipitation systems: a global survey. Radio Sci., 16, 671–689.

    Google Scholar 

  • Kummerow C. and L. Giglio, 1994: A passive microwave technique for estimating rainfall and vertical structure information from space. Part I: algorithm description. J. Appl. Meteor., 33, 3–18.

    Google Scholar 

  • Kummerow C.D., W.S. Olson, and L. Giglio, 1996: A simplified scheme for obtaining precipitation and vertical hydrometeor profiles from passive microwave sensors, IEEE Trans. Geosci. Remote Sensing., 34, 12313–1232.

    Article  Google Scholar 

  • Kummerow C., W. Barnes, T. Kozu, J. Shiue, and J. Simpson, 1998: The Tropical Rainfall Measuring Mission (TRMM) sensor package, J. Atmos. Oceanic Technol., 15, 809–817.

    Article  Google Scholar 

  • Kummerow C., J. Simpson, O. Thiele, W. Barnes, A.T.C. Chang, E. Stocker, R.F. Adler, A. Hou, R. Kakar, F. Wentz, P. Ashcroft, T. Kozu, Y. Hong, K. Okamoto, T. Iguchi, H. Kuroiwa, E. Im, Z. Haddad, G. Huffman, B. Ferrier, W.S. Olson, E. Zipser, E.A. Smith, T.T. Wilheit, G. North, T. Krishnamurti, and K. Nakamura, 2000: The status of the Tropical Rainfall Measuring Mission (TRMM) after two years in orbit. J. Appl. Meteor., 39, 1965–1982.

    Google Scholar 

  • Kummerow, C., D.B. Shin, Y. Hong, W.S. Olson, S. Yang, R.F. Adler, J. McCollum, R. Ferraro, G. Petty, and T.T. Wilheit, 2001: The evolution of Goddard Profiling Algorithm (GPROF) for rainfall estimation from passive microwave sensors. J. Appl. Meteor., 40, 1801–1820.

    Article  Google Scholar 

  • Levizzani V., F. Porcù, F.S. Marzano, A. Mugnai, E.A. Smith, and F. Prodi, 1996: Investigating a SSM/I microwave algorithm to calibrate METEOSAT infrared instantaneous rainrate estimates. Meteorol. Appl., 3, 5–17.

    Google Scholar 

  • Marécal, V. and J.-F. Mahfouf, 2002: Four dimensional variational assimilation of total column water vapor in rainy areas. Mon. Wea. Rev., 130, 43–58.

    Google Scholar 

  • Marzano F.S., A. Mugnai, E.A. Smith, X. Xiang, J. Turk, and J. Vivekanandanan, 1994: Active and passive remote sensing of precipitating storms during CaPE. Pan II: Intercomparison of precipitation retrievals from AMPR radiometer and CP-2 radar. Meteorol. Atmos. Phys., 10, 29–54.

    Google Scholar 

  • Marzano F.S., A. Mugnai, G. Panegrossi, N. Pierdicca, E.A. Smith, and J. Turk, 1999: Bayesian estimation of precipitating cloud parameters from combined measurements of spaceborne microwave radiometer and radar. IEEE Trans. Geosci. Remote Sensing, 37, 596–613.

    Article  Google Scholar 

  • Marzano F.S., J. Turk, P. Ciotti, S. Di Michele, and N. Pierdicca, 2001: Potential of combined spaceborne microwave and infrared radiometry for near real-time rainfall attenuation monitoring along earth-satellite links. Int. J. Satell. Commun., 19, 385–412.

    Article  Google Scholar 

  • Marzano F.S. and P. Bauer, 2001: Sensitivity analysis of airborne microwave retrieval of stratiform precipitation to the melting layer parameterization. IEEE Trans. Geosci. Remote Sensing., 39, 75–91.

    Article  Google Scholar 

  • McGaughey G., E.J. Zipser, R.W. Spencer, and R. Hood, 1996: High-resolution passive microwave observations of convective systems over the tropical pacific ocean. J. Appl. Meteor., 35, 1921–1947.

    Google Scholar 

  • Meneghini R., H. Kumagai, J.R. Wang, T. Iguchi, and T. Kozu, 1997: Microphysical retrievals over stratiform rain using measurements from an airborne dual-wavelength radar-radiometer. IEEE Trans. Geosci. Remote Sensing, 35, 487–506.

    Article  Google Scholar 

  • Miller S.W., P.A. Arkin, and R. Joyce, 2001: A combined microwave/infrared rain rate algorithm. Int. J. Remote Sensing, 22, 3285–3307.

    Article  Google Scholar 

  • Mugnai A., H.J. Cooper, E.A. Smith, and G.J. Tripoli, 1990: Simulation of microwave brightness temperatures of an evolving hail storm at SSM/I frequencies. Bull. Amer. Meteor. Soc., 71, 2–13.

    Google Scholar 

  • Mugnai A., E.A. Smith and G.J. Tripoli, 1993: Foundations for statistical-physical precipitation retrieval from passive microwave satellite measurements. Part II: Emission source and generalized weighting function properties of a time-dependent cloud-radiation model. J. Appl. Meteor., 32, 17–39, 1993.

    Article  Google Scholar 

  • Mugnai A., S. Di Michele, F.S. Marzano, and A. Tassa, 2001: Cloud-model based Bayesian techniques for precipitation profile retrieval from TRMM microwave sensors6, ECMWF/Euro TRMM Workshop on Assimilation of Clouds and Precipitation, European Centre for Medium-Range Weather Forecasts, Reading (UK), 323–345.

    Google Scholar 

  • Mugnai A. and J. Testud, 2002: “EGPM: European contribution to the Global Precipitation Mission”, Proposal in response to The Second Call for Proposals for ESA Earth Explorer Opportunity Missions.

    Google Scholar 

  • Negri A.J., R. Adler, and P.J. Wentzel, 1984: Rain estimation from satellites: an examination of the Griffith-Woodley technique. J. Clim. Appl. Meteor, 23, 102–116.

    Article  Google Scholar 

  • Olson W.S., C.D. Kummerow, G.M. Heymsfield, and L. Giglio, 1996: A method for combined passive-active microwave retrievals of cloud and precipitation parameters. J. Appl. Meteor., 35, 1763–1789.

    Article  Google Scholar 

  • Panegrossi G., S. Dietrich, F.S. Marzano, A. Mugnai, E.A. Smith, X. Xiang, G. J. Tripoli, P.K. Wang, and J.P.V. Poiares Baptista, 1998: Use of cloud model microphysics for passive microwave-based precipitation retrieval: significance of consistancy between model and measurement manifolds. J. Atmos. Sci., 55, 1644–1673.

    Article  Google Scholar 

  • Petty G., 1995: The status of satellite-based rainfall estimation over land. Rem. Sens. of Environ., 51, 125–137.

    Google Scholar 

  • Pierdicca N., F.S. Marzano, G. d’Auria, P. Basili, P. Ciotti, and A. Mugnai, 1996: Precipitation retrieval from spaceborne microwave radiometers based on maximum a posteriori probability estimation. IEEE Geosci. Remote Sensing, 34, 831–846.

    Google Scholar 

  • Simpson J.R., R.F. Adler, and G.R. North, 1988: A proposed Tropical Rainfall Measuring Mission (TRMM) satellite. Bull. Amer. Meteor. Soc., 69, 278–295.

    Google Scholar 

  • Skofronick-Jackson G.M. and A.J. Gasiewskii, 1995: Nonlinear statistical precipitation retrievals using simulated passive microwave imagery. IEEE Trans. Geosci. Remote Sensing, 33, 957–970.

    Article  Google Scholar 

  • Smith E.A., A. Mugnai, H.J. Cooper, G.J. Tripoli, and X. Xiang, 1992: Foundations for statistical-physical precipitation retrieval from passive microwave satellite measurements. Part I: Brightness-temperature properties of a time-dependent cloud-radiation model. J. Appl. Meteor., 31, 506–531.

    Article  Google Scholar 

  • Smith E.A., X. Xiang, A. Mugnai, and G.J. Tripoli, 1994a: “Design of an inversion-based precipitation profile retrieval algorithm using an explicit cloud model for initial guess microphysics”, Meteorol. Atmos. Phys., 54, 53–78.

    Google Scholar 

  • Smith E.A., C. Kummerow, and A. Mugnai, 1994b: “The emergence of inversion-type profile algorithms for estimation of precipitation from satellite passive microwave measurements”, Remote Sens. Rev., 11, 211–242.

    Google Scholar 

  • Smith E.A., J.E. Lamm, R. Adler, J. Alishouse, K. Aonashi, E. Barrett, P. Bauer, W. Berg, A. Chang, R. Ferraro, J. Ferriday, S. Goodman, N. Groody, C. Kidd, D. Kniveton, C. Kummerow, G. Liu, F.S. Marzano, A. Mugnai, W. Olson, G. Petty, A. Shibata, R. Spencer, F. Wentz, T. Wilheit, and E. Zipser, 1998: Results of WetNet PIP-2 Project. J. Atmos. Sci., 55, 1483–1536.

    Article  Google Scholar 

  • Tao W.K., S. Lang, J. Simpson, and R. Adler, 1993: Retrieval algorithms for estimating the vertical profiles of latent heat release: their applications to TRMM. Bull. Meteor. Soc. of Japan, 12, 685–700.

    Google Scholar 

  • Tassa A., S. Di Michele, A. Mugnai, F.S. Marzano, and J.P.V. Poiares Baptista, 2002: Cloud-model based Bayesian technique for precipitation profile retrieval from TRMM Microwave Imager, Radio Sci., in press.

    Google Scholar 

  • Turk J.F., F.S. Marzano, E.A. Smith, and A. Mugnai, 1998a: Using coincident SSM/I and infrared geostationary satellite data for rapid updates of rainfall. Proc. of IGARSS’98. Seattle (WA, USA).

    Google Scholar 

  • Turk J., F.S. Marzano, and A. Mugnai, 1998b: Effects of degraded sensor resolution upon passive microwave retrievals of tropical rainfall. J. Atm. Sci., 55, 1689–1705.

    Google Scholar 

  • Turk J.F., G. Rohaly, J. Hawkins, E.A. Smith, F.S. Marzano, A. Mugnai, and V. Levizzani, 1999: Meteorological applications of precipitation estimation from combined SSM/I, TRMM and geostationary satellite data. Microwave Radiometry and Remote Sensing of the Environment, P. Pampaloni Ed., VSP Intern. Sci. Publisher, Utrecht (The Netherlands), 353–363.

    Google Scholar 

  • Turk, J., E. E. Ebert, H.J. Oh and B.J. Sohn, 2002: Validation and Applications of a Realtime Global Precipitation Analysis. Proc. IGARSS’02, June 24–28, Toronto (Canada).

    Google Scholar 

  • Vicente G.A., R.A. Scofield, and W.P. Menzel, 1998: The operational GOES infrared rainfall estimation technique. Bull. Amer. Meteor. Soc., 79, 1883–1898.

    Google Scholar 

  • Viltard N., C. Kummerow, W.S. Olson, and Y. Hong, 2000: Combined use of the radar and radiometer of TRMM to estimate the influence of drop size distribution on rain retrievals. J. Appl. Meteor., 39, 2103–2114.

    Google Scholar 

  • Weinman J.A., R. Meneghini and K. Nakamura, 1990: Retrieval of precipitation profiles from airborne radar and passive microwave radiometer measurements: comparison with dual-frequency radar measurements. J. Appl. Meteor., 29, 981–993.

    Article  Google Scholar 

  • Wilheit T.T., R. Adler, S. Avery, E. Barrett, P. Bauer, W. Berg, A. Chang, J. Ferriday, N. Grody, S. Goodman, C. Kidd, D. Kniveton, C. Kummerow, A. Mugnai, W. Olson, G. Petty, A. Shibata, and E.A. Smith, 1994: Algorithms for the retrieval of rainfall from passive microwave measurements. Remote Sens. Rev., 11, 163–194.

    Google Scholar 

  • Yuter S.E., R.A. Houze Jr., B.F. Smull, F.D. Marks Jr., J.R. Daugherty, and S.R. Brodzik, 1995: TOGA-COARE aircraft mission summary images: an electronic atlas. Bull. Amer. Meteor. Soc., 76, 319–328.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Marzano, F.S., Mugnai, A., Turk, F.J. (2002). Precipitation Retrieval From Spaceborne Microwave Radiometers and Combined Sensors. In: Marzano, F.S., Visconti, G. (eds) Remote Sensing of Atmosphere and Ocean from Space: Models, Instruments and Techniques. Advances in Global Change Research, vol 13. Springer, Dordrecht. https://doi.org/10.1007/0-306-48150-2_8

Download citation

  • DOI: https://doi.org/10.1007/0-306-48150-2_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0943-3

  • Online ISBN: 978-0-306-48150-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics