Skip to main content

Part of the book series: Bioelectric Engineering ((BEEG))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C.L. Rieder and A. Khodjakov, Mitosis Through the Microscope: Advances in Seeing Inside Live Dividing Cells, Science 300 91–96 (2003).

    Article  Google Scholar 

  2. J. Lippincott-Schwarz and G.H. Patterson, Development and Use of Fluorescent Protein Markers in Living Cells, Science 300 87–91 (2003).

    Google Scholar 

  3. J.M. Levsky, Shailesh M. Shenoy, R.C. Pezo, and R.H. Singer, Single-Cell Gene Expression Profiling, Science 297 836–840 (2002).

    Article  Google Scholar 

  4. S.F. Ibrahim and G.V.D. Engh, High speed cell sorting: fundamentals and recent advances, Current Opinion in Biotechnology 14 5–12 (2003).

    Article  Google Scholar 

  5. S.V. Nayak, A. S. Shivarudrappa, and A.S. Mukkamil, Role of Fluorescent Microscopy in Detecting Mycobacterium leprae in Tissue Sections, Annals of Diagnostic Pathology 7(2), 78–81 (2003).

    Google Scholar 

  6. K. Truong, M. Gerbault-Seureau, M.-N. Guilly, P. Vielh, G. Zalcman, A. Livartowski, A. Chapelier, M.-F. Poupon, B. Dutrillaux, and B. Malfoy, Quantitative Fluorescence in Situ Hybridization in Lung Cancer as a Diagnostic Marker, J Mol Diagn 33–37 (1999).

    Google Scholar 

  7. W.C. Chan, D.J. Maxwell, X. Gao, R.E. Bailey, M. Han, and S. Nie, Luminescent quantum dots for multiplexed biological detection and imaging, Current Opinion in Biotechnology 13(1), 40–46 (2002).

    Article  Google Scholar 

  8. M. Bruchez, Jr., M. Moronne, P. Gin, S. Weiss, and A.P. Alivisatos, Semiconductor nanocrystals as fluorescent biological labels., Science 281(5385), 2013–6 (1998).

    Google Scholar 

  9. W.C. Chan and S. Nie, Quantum dot bioconjugates for ultrasensitive nonisotopic detection., Science 281(5385), 2016–2018 (1998).

    Article  Google Scholar 

  10. S. Coe-Sullivan, W.-K. Woo, J.S. Steckel, M. Bawendi, and V. Bulovi,C Tuning the performance of hybrid organic/inorganic quantum dot light-emitting devices, Organic Electronics 4(2–3), 123–130 (2003).

    Google Scholar 

  11. S. Coe, W.-K. Woo, M. Bawendi, and V. Bulovi, Electroluminescence from single monolayers of nanocrystals in molecular organic devices, Nature 420 800–803 (2002).

    Article  Google Scholar 

  12. A.J. Nozik, Quantum dot solar cells, Physica E 14 115–120 (2002).

    Article  Google Scholar 

  13. R.P. Raffaelle, S.L. Castro, A.F. Hepp, S.G. Bailey, and S. Issue, Quantum Dot Solar Cells, Prog. Photovolt: Res. Appl. 10 433–439 (2002).

    Google Scholar 

  14. A. Singhal, H. Fischer, and W.C. Chan, Unpublished data. 2003.

    Google Scholar 

  15. J.E.B. Katari, V.L. Colvin, and A.P. Alivisatos, X-ray Photoelectron Spectroscopy of CdSe Nanocrystals with Applications to Studies of the Nanocrystal Surface, J. Phys. Chem. 98 4109–4117 (1994).

    Article  Google Scholar 

  16. B.O. Dabbousi, J. Rodriguez-Viejo, F.V. Mikule, J.R. Heine, H. Mattoussi, R. Ober, K.F. Jensen, and A.M.G. Bawendi, (CdSe)ZnS Core-Shell Quantum Dots: Synthesis and Characterization of a Size Series of Highly Luminescent Nanocrystallites, J. Phys. Chem. B 101 9463–9475 (1997).

    Article  Google Scholar 

  17. R.E. Bailey and S. Nie, Alloyed Semiconductor Quantum Dots: Tuning the Optical Properties without Changing the Particle Size, J. Am. Chem. Soc. 125(23), 7100–7106 (2003).

    Article  Google Scholar 

  18. W.C.W. Chan. Ph.D. Thesis. “Semiconductor Quantum Dots for Ultrasensitive Biological Detection and Imaging.” Indiana University, 2001.

    Google Scholar 

  19. A. Henglein, Small-particle research: physiochemical properties of extremely small colloidal metal and semiconductor particles, Chemical Review 89 1861–1873 (1989).

    Google Scholar 

  20. C.A. Leatherdale, W.-K. Woo, F.V. Mikule, and M.G. Bawendi, On the Absorption Cross Section of CdSe Nanocrystal Quantum Dots, J. Phys. Chem. B 106 7619–7622 (2002).

    Article  Google Scholar 

  21. X.E.A. Wu, Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots, Nature Biotechnology 21 41–46 (2003).

    Google Scholar 

  22. A.P. Alivisatos, Perspectives on the Physical Chemistry of Semiconductor Nanocrystals, J. Phys. Chem. 100 13226–13239 (1996).

    Article  Google Scholar 

  23. C.B. Murray, C.R. Kagan, and M.G. Bawendi, Synthesis and Characterization of Monodisperse Nanocrystals and Close-Packed Nanocrystal Assemblies, Annu. Rev. Mater. Sci. 30 545–610 (2000).

    Article  Google Scholar 

  24. A.P. Alivisatos, Semiconductor clusters, nanocrystals, and quantum dots, Science 271 933–937 (1996).

    Google Scholar 

  25. M. Nirmal, Brus, L. E., Luminescence photophysics in semiconductor nanocrystals, Account Chemical Research 32 407–414 (1999).

    Google Scholar 

  26. A.A. Guzelian, J.E.B. Katari, A. Kadavanich, U. Banin, K. Hamad, E. Juban, A.P. Alivisatos, R.H. Wolters, C.C. Arnold, and J.R. Heath, Synthesis of size-selected, surface passivated InP nanocrystals, J. Phys. Chem. 100 7212–7219 (1996).

    Article  Google Scholar 

  27. J.A. Prieto, G. Armelles, J. Groenen, and R. Cales, Size and strain effects in the E-1-like optical transitions of InAs/InP self-assembled quantum dot structures., Appl. Phys. Lett. 74 99–101 (1999).

    Article  Google Scholar 

  28. L. Manna, E.C. Scher, L.-S. Li, and A.P. Alivisatos, Epitaxial Growth and Photochemical Annealing of Graded CdS/ZnS Shells on Colloidal CdSe Nanorods, J. Am. Chem. Soc. 124(24), 7136–7145 (2002).

    Article  Google Scholar 

  29. S.F. Wuister, I. Swart, F.V. Driel, S.G. Hickey, and C.D.M. Donega, Highly Luminescent Water-Soluble CdTe Quantum Dots, Nano. Lett. 3(4), 503–507 (2003).

    Article  Google Scholar 

  30. C.B. Murray, D.J. Norris, and M.G. Bawendi, Synthesis and Characterization of Nearly Monodisperse CdE (E = S, Se, Te) Semiconductor Nanocrystallites, J. Am. Chem. Soc. 115 8706–8715 (1993).

    Google Scholar 

  31. M.A. Hines and P. Guyot-Sionnest, Synthesis and Characterization of Strongly Luminescing ZnS-Capped CdSe Nanocrystals, J. Phys. Chem. B 100 468–471 (1996).

    Google Scholar 

  32. X. Peng, M.C. Schlamp, A.V. Kadavanich, and A.P. Alivisatos, Epitaxial Growth of Highly Luminescent CdSe/CdS Core/Shell Nanocrystals with Photostability and Electronic Accessibility, J. Am. Chem. Soc. 119 7019–7029 (1997).

    Google Scholar 

  33. A.R. Kortan, R. Hull, R.L. Opila, B.M.G., M. Steigerwald, P.J. Carroll, and L. Brus, Nucleation and Growth of CdSe on ZnS quantum crystallite seeds, and vice versa, in inverse micelle media, J. Am. Chem. Soc. 112 1327–1332 (1990).

    Article  Google Scholar 

  34. T. Dannhauser, M. O’neil, K. Johansson, D. Whitten, and G. Mclendon, Photophysics of quantized colloidal semiconductors: dramatic luminescence enhancement by binding of simple amines., J. Phys. Chem. 90 6074–6076 (1986).

    Article  Google Scholar 

  35. C. Dameron, R.N. Reese, R.K. Mehra, A.R. Kortan, P.J. Carroll, M. Steigerwald, L. Brus, and D.R. Winger, Biosynthesis of cadmium sulfide quantum semiconductor crystallites, Nature 338 596–597 (1989).

    Article  Google Scholar 

  36. C. Dameron, B. Smith, and D. Winge, Glutathione-coated cadmium-sulfide crystallites in Candida glabrata, J. Biol. Chem. 264 17355–17360 (1989).

    Google Scholar 

  37. V.K. Lamer and R.H. Dinegar, Theory, Production and Mechanism of Formation of Monodispersed Hydrosols, J. Am. Chem. Soc. 72(11), 4847–4854 (1950).

    Article  Google Scholar 

  38. T. Sugimoto, Preparation of monodispersed colloidal particles, Advances in Colloid and Interface Science 28 65–108 (1987).

    Article  Google Scholar 

  39. L. Qu, Z.A. Peng, and X. Peng, Alternative Routes toward High Quality CdSe Nanocrystals, Nanoletlers 1(6), 333–337 (2001).

    Google Scholar 

  40. Z.A. Peng and X. Peng, Formation of High-Quality CdTe, CdSe, and CdS Nanocrystals Using CdO as a Precursor, J. Am. Chem. Soc. 123 183–184 (2001).

    Google Scholar 

  41. I. Mekis, D.V. Talapin, A. Kornowski, M. Haase, and H. Weller, One-Pot Synthesis of Highly Luminescent CdSe/CdS Core-Shell Nanocrystals via Organometallic and “Greener” Chemical Approaches, J. Phys. Chem. B 107 7454–7462 (2003).

    Article  Google Scholar 

  42. H. Mattoussi, J.M. Mauro, E.R. Goldman, T.M. Green, G.P. Anderson, V.C. Sundar, and M.G. Bawendi, Bioconjugation of Highly Luminescent Colloidal CdSe-ZnS Quantum Dots with an Engineered Two-Domain Recombinant Protein., Physica Status Solidi (b) 244(1), 277–283 (2001).

    Google Scholar 

  43. B. Dubertret, P. Skourides, S.J. Norris, V. Noireaux, A.H. Brivanlou, and A. Libchaber, In Vivo Imaging of Quantum Dots Encapsulated in Phospholipid Micelles, Science 298 1759–1762 (2002).

    Article  Google Scholar 

  44. H. Mattoussi, J.M. Mauro, E.R. Goldman, G.P. Anderson, V.C. Sundar, F.V. Mikule, C and M.G. Bawendi, Self-Assembly of CdSe-ZnS Quantum Dot Bioconjugates Using an Engineered Recombinant Protein, J. Am, Chem. Soc. 122 12142–12150 (2000).

    Article  Google Scholar 

  45. J.K. Jaiswal, H. Mattoussi, J.M. Mauro, and S.M. Simon, Long-term multiple color imaging of live cells using quantum dot bioconjugates.[comment], Nature Biotechnology 21(1), 47–51 (2003).

    Article  Google Scholar 

  46. M.E. Akerman, W.C. Chan, P. Laakkonen, S.N. Bhatia, and E. Ruoslahti, Nanocrystal targeting in vivo, P.N.A.S. 99(20), 12617–21 (2002).

    Google Scholar 

  47. S. Mardyani, W. Jiang, H. Fischer, A. Singhal, and W.C. Chan, unpublished data, (2004).

    Google Scholar 

  48. A.M. Derfus, W.C.W. Chan, and S.N. Bhatia, Probing the Cytotoxicity of Semiconductor Quantum Dots, Nano Lett. (2003, in print.).

    Google Scholar 

  49. A.J. Sutherland, Quantum dots as luminescent probes in biological systems., Current Opinion in Solid State and Material Science 6(4), 365–370 (2002).

    Google Scholar 

  50. M. Dahan, T. Laurence, F. Pinaud, and D. Chemla, Time-gated biological imaging by use of colloidal quantum dots, Optics Letters 26(11), 825–827 (2001).

    Google Scholar 

  51. M. Dahan, S. Levi, C. Luccardini, P. Rostaing, B. Riveau, and A. Triller, Diffusion Dynamics of Glycine Receptors Revealed by Single-Quantum Dot Tracking, Science 302 442–445 (2003).

    Article  Google Scholar 

  52. C. Seydel, Quantum Dots Get Wet, Science April 4 300 80–81 (2003).

    Google Scholar 

  53. S. Kim, Y.T. Lim, E.G. Soltesz, A.M. De Grand, J. Lee, A. Nakayama, J.A. Parker, T. Mihaljevi, R.G. Laurence, D.M. Dor, L.H. Cohn, M.G. Bawendi, and J.V. Frangioni, Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping, Nature Biotechnology 22(1), 93–97 (2004).

    Article  Google Scholar 

  54. E.R. Goldman, G.P. Anderson, P.T. Tran, and H. Mattoussi, Conjugation of Luminescent Quantum Dots with Antibodies Using an Engineered Adaptor Protein To Provide New Reagents for Fluoroimmunoassays, Anal. Chem. 74 841–847 (2002).

    Article  Google Scholar 

  55. S. Pathak, Choi, S. K., Arnheim, N., Thompson, M. E., Hydroxylated quantum dots as luminescent probes for in situ hybridization, Journal of the American Chemical Society 123 4103–4104 (2001).

    Article  Google Scholar 

  56. I.L. Medintz, A.R. Clapp, H. Mattoussi, E.R. Goldman, B. Fisher, and J.M. Mauro, Self-assembled nanoscale biosensors based on quantum dot FRET donors, Nature Materials 2 630–638 (2003).

    Article  Google Scholar 

  57. M. Han, X. Gao, J.Z. Su, and S. Nie, Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules, Nature Biotechnology 19 631–635 (2001).

    Google Scholar 

  58. L. Manna, E.G. Scher, and A.P. Alivisatos, Synthesis of Soluble and Processable Rod-, Arrow-, Teardrop-, and Tetrapod-Shaped CdSe Nanocrystals, J. Am. Chem. Soc. 122(51), 12700–12706 (2000).

    Article  Google Scholar 

  59. L.-S. Li, J. Hu, W. Yang, and A.P. Alivisatos, Band Gap Variation of Size-and Shape-Controlled Colloidal CdSe Quantum Rods, Nano Lett. 1(7), 349–351 (2001).

    Article  Google Scholar 

  60. E.D. Sone, E.R. Zubarev, and S.I. Stupp, Semiconductor Nanohelices Templated by Supramolecular Ribbons, Angew. Chem. Int. Ed. 41(10), 1705 (2002).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science + Business Media, Inc.

About this chapter

Cite this chapter

Singhal, A., Fischer, H.C., Wong, J., Chan, W.C.W. (2004). Biomedical Applications of Semiconductor Quantum Dots. In: Stroscio, M.A., Dutta, M. (eds) Biological Nanostructures and Applications of Nanostructures in Biology. Bioelectric Engineering. Springer, Boston, MA. https://doi.org/10.1007/0-306-48628-8_2

Download citation

  • DOI: https://doi.org/10.1007/0-306-48628-8_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-48627-2

  • Online ISBN: 978-0-306-48628-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics