Skip to main content

Postnatal Development of Central Feeding Circuits

  • Chapter
Neurobiology of Food and Fluid Intake

Part of the book series: Handbook of Behavioral Neurobiology ((HBNE,volume 14))

Summary

There may be a genetically predetermined, inherent drive to eat that is only periodically neutralized by satiety, sleep, or other competing drives (Berthoud, 2002). In infants, and perhaps also in adults, disinhibition of feeding motor outputs by factors that remove, compete with, or otherwise neutralize inhibitory controls of feeding could be enough to initiate and maintain food intake without the need for special “hunger” stimuli (Stricker, 1984). Research reviewed in this chapter supports the view that behavioral responses to such direct and indirect controls of feeding might generally be effected through DVC neural circuits. The intrinsic components and output pathways of these circuits are accessed by numerous afferent inputs in mature rats, but by a more limited set of inputs in neonatal rats. Our understanding of these central neural systems will be enhanced by continued examination of behavioral and physiological responses to treatments that affect food intake differently in developing and mature animals. The presence or absence of responses to a given stimulus or control presumably reflects the functional integrity of neural circuits that receive and process the signal, and those that organize and execute the response. As new behavioral responses emerge during postnatal development, one may infer maturation of the neural systems and, importantly, the functional interactions among neural systems that support these responses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ackerman, S. H., Albert, M., Shindledecker, R. D., Gayle, C., & Smith, G. P. (1992). Intake of different concentrations of sucrose and corn oil in preweaning rats. American Journal of Physiology, 262, R624–R627.

    CAS  PubMed  Google Scholar 

  • Ahima, R. S., & Hileman, S. M. (2000). Postnatal regulation of hypothalamic neuropeptide expression by leptin: Implications for energy balance and body weight regulation. Regulatory Peptides, 92, 1–7.

    Article  CAS  PubMed  Google Scholar 

  • Ahima, R. S., Prabhakaran, D., & Flier, J. S. (1998). Postnatal leptin surge and regulation of circadian rhythm of leptin by feeding. Journal of Clinical Investigation, 101, 1020–1027.

    CAS  PubMed  Google Scholar 

  • Almli, C. R. (1973). The ontogeny of the onset of drinking and plasma osmotic pressure regulation. Developmental Psychobiology, 6, 147–158.

    Article  CAS  PubMed  Google Scholar 

  • Altman, J., & Sudarshan, K. (1975). Postnatal development of locomotion in the laboratory rat. Animal Behaviour, 23, 896–920.

    Article  CAS  PubMed  Google Scholar 

  • Asarian, L., & Geary, N. (1999). Cyclic estradiol treatment phasically potentiates endogenous cholecystokinin’s satiating action in ovariectomized rats. Peptides, 20, 445–450.

    Article  CAS  PubMed  Google Scholar 

  • Banks, W. A., Kastin, A. J., & Huang, W. E. A. (1996). Leptin enters the brain by a saturable system independent of insulin. Peptides, 17, 305–311.

    Article  CAS  PubMed  Google Scholar 

  • Beck, B. (2000). Neuropeptides and obesity. Nutrition, 16, 916–923.

    Article  CAS  PubMed  Google Scholar 

  • Berthoud, H.-R. (2002). Multiple neural systems controlling food intake and body weight. Neuroscience and Biobehavioral Reviews, 26, 393–428.

    Article  PubMed  Google Scholar 

  • Blass, E. M., Beardsley, W., & Hall, W. G. (1979a). Age-dependent inhibition of suckling by cholecystokinin. American Journal of Physiology, 236, E567–E570.

    CAS  PubMed  Google Scholar 

  • Blass, E. M., Hall, W. G., & Teicher, M. H. (1979b). The ontogeny of suckling and ingestive behaviors. Progress in Psychobiology and Physiological Psychology, 8, 243–299.

    Google Scholar 

  • Blass, E. M., & Shide, D. J. (1993). Endogenous cholecystokinin reduces vocalization in isolated 10-day-old rats. Behavioral Neuroscience, 107, 488–492.

    Article  CAS  PubMed  Google Scholar 

  • Boekelaar, A. B., Drukker, J., Groen, G. J., & Baljet, B. (1985). The development of the peripheral autonomic nervous system in relation to the gastro-intestinal tract. Acta Morphologica Neerlando-Scandinavica, 23, 157–180.

    CAS  PubMed  Google Scholar 

  • Bouret, S. G., Draper, S. J., & Simerly, R. B. (2004). Formation of projection pathways from the arcuate nucleus of the hypothalamus to hypothalamic regions implicated in the neural control of feeding behavior in mice. Journal of Neuroscience, 24, 2797–2805.

    Article  CAS  PubMed  Google Scholar 

  • Bouret, S. (2002). Development of pathways from the arcuate nucleus implicated in neural controls of feeding behavior in mice. Appetite, 39, 66.

    Google Scholar 

  • Bouret, S., Draper, S., Polston, E. K., & Simerly, R. B. (2001). Ontogeny of projections from the arcuate nucleus of the hypothalamus in mice [Abstract]. Society for Neuroscience Abstracts, 27, 946.4.

    Google Scholar 

  • Bouret, S., & Simerly, R. B. (2002). Leptin deficiency retards development of projections from the arcuate nucleus of the hypothalamus [Abstract]. Society for Neuroscience Abstracts, 28, 573.13.

    Google Scholar 

  • Brake, S. C., Shair, H., & Hofer, M. A. (1988). Exploiting the nursing niche: The infant’s sucking and feeding in the context of the mother-infant interaction. In E. M. Blass (Ed.), Handbook of behavioral neurobiology (pp. 347–388). New York: Plenum Press.

    Google Scholar 

  • Broberger, C., & Hokfelt, T. (2001). Hypothalamic and vagal neuropeptide circuitries regulating food intake. Physiology and Behavior, 74, 669–682.

    Article  CAS  PubMed  Google Scholar 

  • Broberger, C., Johansen, J., Brismar, H., Johansson, C., Schalling, M., & Hokfelt, T. (1999). Changes in neuropeptide Y receptors and pro-opiomelanocortin in the anorexia (anx/anx) mouse hypothalamus. Journal of Neuroscience, 19, 7130–7139.

    CAS  PubMed  Google Scholar 

  • Bruno, J. P. (1981). Development of drinking behavior in preweanling rats. Journal of Comparative and Physiological Psychology, 95, 1016–1027.

    Google Scholar 

  • Bruno, J. P., & Hall, W. G. (1982). Olfactory contributions to dehydration-induced anorexia in weanling rats. Developmental Psychobiology, 15, 493–505.

    Article  CAS  PubMed  Google Scholar 

  • Buijs, R. M., Velis, D. N., & Swaab, D. F. (1980). Ontogeny of vasopressin and oxytocin in the fetal rat: Early vasopressinergic innervation of the fetal brain. Peptides, 1, 315–324.

    Article  CAS  PubMed  Google Scholar 

  • Burdyga, G., Spiller, D., Morris, R., Lal, S., Thompson, D. G., Saeed, S. et al. (2002). Expression of the leptin receptor in rat and human nodose ganglia neurones. Neuroscience, 109, 339–347.

    Article  CAS  PubMed  Google Scholar 

  • Callahan, J. B., & Rinaman, L. (1998). The postnatal emergence of dehydration anorexia in rats is temporally associated with the emergence of dehydration-induced inhibition of gastric emptying. Physiology and Behavior, 64, 683–687.

    Article  CAS  PubMed  Google Scholar 

  • Capuano, C. A., Leibowitz, S. F., & Barr, G. A. (1993). Effect of paraventricular injection of neuropeptide Y on milk and water intake of preweanling rats. Neuropeptides, 24, 177–182.

    Article  CAS  PubMed  Google Scholar 

  • Card, J. P. (1998). Exploring brain circuitry with neurotropic viruses: New horizons in neuroanatomy. The Anatomical Record (New Anat), 253, 176–185.

    Article  CAS  Google Scholar 

  • Changizi, M. A., McGehee, R. M. F., & Hall, W. G. (2002). Evidence that appetitive responses for dehydration and food-deprivation are learned. Physiology and Behavior, 75, 295–304.

    Article  CAS  PubMed  Google Scholar 

  • Cheslock, S. J., Varlinskaya, E. I., Petrov, E. S., & Spear, N. E. (2000). Rapid and robust olfactory conditioning with milk before suckling experience: Promotion of nipple attachment in the newborn rat. Behavioral Neuroscience, 114, 484–495.

    Article  CAS  PubMed  Google Scholar 

  • Cone, R. D., Cowley, M. A., Butler, A. A., Fan, W., Marks, D. L., & Low, M. J. (2001). The arcuate nucleus as a conduit for diverse signals relevant to energy homeostasis. International Journal of Obesity and Related Metabolic Disorders, 25, S63–S67.

    Article  CAS  PubMed  Google Scholar 

  • Craig, W. (1918). Appetites and aversions as constituents of instincts. Biological Bulletin, 34, 91–107.

    Google Scholar 

  • Cramer, C. P., & Blass, E. M. (1985). Nutritive and nonnutritive determinants of milk intake in suckling rats. Behavioral Neuroscience, 99, 578–582.

    Article  CAS  PubMed  Google Scholar 

  • Dethier, V. G. (1976). The hungry fly: A physiological study of the behavior associated with feeding. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Devaskar, S. U., Ollesch, C., Rajakumar, R. A., & Rajakumar, P. A. (1997). Developmental changes in ob gene expression and circulating leptin peptide concentrations. Biochemical and Biophysical Research Communications, 238, 44–47.

    Article  CAS  PubMed  Google Scholar 

  • Drewett, R. F. (1978). Gastric and plasma volume in the control of milk intake in suckling rats. Quarterly Journal of Experimental Psychology, 30, 755–764.

    CAS  PubMed  Google Scholar 

  • Drewett, R. F., & Cordall, K. M. (1976). Control of feeding in suckling rats: Effects of glucose and osmotic stimuli. Physiology and Behavior, 16, 711–718.

    Article  CAS  PubMed  Google Scholar 

  • Eckel, L. A., & Geary, N. (1999). Endogenous cholecystokinin’s satiating action increases during estrus in female rats. Peptides, 20, 451–456.

    Article  CAS  PubMed  Google Scholar 

  • Ellis, S., Axt, K., & Epstein, A. N. (1984). The arousal of ingestive behaviors by chemical injection into the brain of the suckling rat. Journal of Neuroscience, 4, 945–955.

    CAS  PubMed  Google Scholar 

  • Emond, M., Schwartz, G. J., Ladenheim, E. E., & Moran, T. H. (1999). Central leptin modulates behavioral and neuronal responsivity to CCK. American Journal of Physiology. Regulatory, Integreative Comparative and Physiology, 276, R1545–R1549.

    CAS  Google Scholar 

  • Epstein, A. N. (1976). Feeding and drinking in suckling rats. In D. Novin, W. Wyrwicka, & G. A. Bray (Eds.), Hunger Basic mechanisms and clinical implications & New York: Raven Press.

    Google Scholar 

  • Epstein, A. N. (1984). The ontogeny of neurochemical systems for control of feeding and drinking. Proceedings of the Society for Experimental Biology and Medicine, 175, 127–134.

    CAS  PubMed  Google Scholar 

  • Ericsson, A., Kovacs, K. J., & Sawchenko, P. E. (1994). A functional anatomical analysis of central pathways subserving the effects of interleukin-1 on stress-related neuroendocrine neurons. Journal of Neuroscience, 14, 897–913.

    CAS  PubMed  Google Scholar 

  • Fay, R. A., & Norgren, R. (1997a). Identification of rat brainstem multisynaptic connections to the oral motor nuclei in the rat using pseudorabies virus. I. Masticatory muscle motor systems. Brain Research Reviews, 25, 255–275.

    Article  CAS  PubMed  Google Scholar 

  • Fay, R. A., & Norgren, R. (1997b). Identification of rat brainstem multisynaptic connections to the oral motor nuclei in the rat using pseudorabies virus. III. Lingual muscle motor systems. Brain Research Reviews, 25, 291–311.

    Article  CAS  PubMed  Google Scholar 

  • Fay, R. A., & Norgren, R. (1997c). Identification of rat brainstem multisynaptic connections to the oral motor nuclei in the rat using pseudorabies virus. II. Facial muscle motor systems. Brain Research Reviews, 25, 276–290.

    Article  CAS  PubMed  Google Scholar 

  • Figlewicz, D. P., Schwartz, M. W., Seeley, R. J., Chavez, M., Baskin, D. G., Woods, S. C. et al. (1996). Endocrine regulation of food intake and body weight. Journal of Laboratory and Clinical Medicine, 127, 328–332.

    Article  CAS  PubMed  Google Scholar 

  • Fisher, R. S., & Almli, C. R. (1984). Postnatal development of sensory influences on lateral hypothalamic neurons of the rat. Developmental Brain Research, 12, 55–75.

    Article  Google Scholar 

  • Fitzsimons, J. T. (1963). The effects of slow infusions of hypertonic solutions on drinking and drinking thresholds in rats. Journal of Physiology, 167, 344–354.

    CAS  PubMed  Google Scholar 

  • Flanagan, L. M., Blackburn, R. E., Verbalis, J. G., & Stricker, E. M. (1992). Hypertonic NaCl inhibits gastric motility and food intake in rats with lesions in the rostral AV3V region. American Journal of Physiology, 263, R9–R14.

    CAS  PubMed  Google Scholar 

  • Flanagan, L. M., Verbalis, J. G., & Stricker, E. M. (1989). Effects of anorexigenic treatments on gastric motility in rats. American Journal of Physiology, 256, R955–R961.

    CAS  PubMed  Google Scholar 

  • Flynn, F. W., Curtis, K. S., Verbalis, J. G., & Stricker, E. M. (1995). Dehydration anorexia in decerebrate rats. Behavioral Neuroscience, 109, 1009–1012.

    Article  CAS  PubMed  Google Scholar 

  • Fraley, G. S., & Ritter, S. (2003). Immunolesion of norepinephrine and epinephrine afferents to medial hypothalamus alters basal and 2-deoxy-D-glucose-induced neuropeptide Y and agouti gene-related protein messenger ribonucleic acid expression in the arcuate nucleus. Endocrinology, 144, 75–83.

    Article  CAS  PubMed  Google Scholar 

  • Friedman, M. I. (1975). Some determinants of milk ingestion in suckling rats. Journal of Comparative and Physiological Psychology, 89, 636–647.

    Google Scholar 

  • Gabella, G. (1979). Innervation of the gastro-intestinal tract. International Review of Cytology, 59, 130–194.

    Article  Google Scholar 

  • Geary, N. (2001). Estradiol, CCK and satiation. Peptides, 22, 1251–1263.

    Article  CAS  PubMed  Google Scholar 

  • Gilman, A. (1937). The relation beween osmotic pressure, fluid distribution, and voluntary water intake. American Journal of Physiology, 120, 323–328.

    CAS  Google Scholar 

  • Goldstone, A. P., Mercer, J. G., Gunn, I., Moar, K. M., Edwards, C. M. B., Rossi, M. et al. (1997). Leptin interacts with glucagon-like peptide-1 neurons to reduce food intake and body weight in rodents. FEBS Letters, 415, 134–138.

    Article  CAS  PubMed  Google Scholar 

  • Grill, H. J., & Kaplan, J. M. (2002). The neuroanatomical axis for control of energy balance. Frontiers in Neuroendocrinology, 23, 2–40.

    Article  CAS  PubMed  Google Scholar 

  • Grill, H. J., Schwartz, M. W., Kaplan, J. M., Foxhall, J. S., Breininger, J., & Baskin, D. G. (2002). Evidence that the caudal brainstem is a target for the inhibitory effect of leptin on food intake. Endocrinology, 143, 239–246.

    Article  CAS  PubMed  Google Scholar 

  • Grill, H. J., & Smith, G. P. (1988). Cholecystokinin decreases sucrose intake in chronic decerebrate rats. American Journal of Physiology, 253, R853–R856.

    Google Scholar 

  • Grove, K. L., Allen, S., Grayson, B. E., & Smith, M. S. (2003). Postnatal development of the hypothalamic neuropeptide Y system. Neuroscience, 116, 393–406.

    Article  CAS  PubMed  Google Scholar 

  • Grove, K. L., Brogan, R. S., & Smith, M. S. (2001). Novel expression of neuropeptide Y (NPY) mRNA in hypothalamic regions during development: Region specific effects of nutritional deprivation on NPY and agouti related protein mRNA. Endocrinology, 142, 4771–4776.

    Article  CAS  PubMed  Google Scholar 

  • Hall, W. G. (1979a). The ontogeny of feeding in rats: I. Ingestive and behavioral responses to oral infusions. Journal of Comparative and Physiological Psychology, 93, 977–1000.

    Google Scholar 

  • Hall, W. G. (1979b). Feeding and behavioral activation in infant rats. Science, 205, 206–209.

    CAS  PubMed  Google Scholar 

  • Hall, W. G. (1985). What we know and don’t know about the development of independent ingestion in rats. Appetite, 6, 333–356.

    CAS  PubMed  Google Scholar 

  • Hall, W. G. (1989). Neural systems for early independent ingestion: Regional metabolic changes during ingestive responding and dehydration. Behavioral Neuroscience, 103, 386–411.

    Article  CAS  PubMed  Google Scholar 

  • Hall, W. G. (1990). The ontogeny of ingestive behavior: Changing control of components in the feeding sequence. In E. M. Stricker (Ed.), Handbook of behavioral neurobiology (pp. 77–123). New York: Plenum.

    Google Scholar 

  • Hall, W. G., Arnold, H. M., & Myers, K. P. (2000). The acquisition of an appetite. Psychological Science, 11, 101–105.

    Article  CAS  PubMed  Google Scholar 

  • Hall, W. G., & Bryan, T. E. (1980). Te ontogeny of feeding in rats. II. Independent ingestive behavior. Journal of Comparative and Physiological Psychology, 94, 746–756.

    Google Scholar 

  • Hall, W. G., & Bryan, T. E. (1981). The ontogeny of feeding in rats: IV. Taste development as measured by intake and behavioral responses to oral infusions of sucrose and quinine. Journal of Comparative and Physiological Psychology, 95, 240–251.

    CAS  PubMed  Google Scholar 

  • Hall, W. G., Cramer, C. P., & Blass, E. M. (1975). Developmental changes in suckling of rat pups. Nature, 258, 318–319.

    Article  CAS  PubMed  Google Scholar 

  • Hall, W. G., & Rosenblatt, J. S. (1977). Suckling behavior and intake control in the developing rat pup. Journal of Comparative and Physiological Psychology, 91, 1232–1247.

    Google Scholar 

  • Hall, W. G., & Rosenblatt, J. S. (1978). Development of nutritional control of food intake in suckling rat pups. Behavioral Biology, 24, 413–427.

    Article  CAS  PubMed  Google Scholar 

  • Heller, H. (1949). Effects of dehydration on adult and newborn rats. Journal of Physiology, 108, 303–314.

    Google Scholar 

  • Henning, S. J., Chang, S.-S. P., & Gisel, E. G. (1979). Ontogeny of feeding controls in suckling and weanling rats. American Journal of Physiology, 237, R187–R191.

    CAS  PubMed  Google Scholar 

  • Hinde, R. A. (1970). Animal behavior: A synthesis of ethology and comparative psychology. New York: McGraw-Hill.

    Google Scholar 

  • Hironaka, S., Shirakawa, T., Toki, S., Kinoshita, K., & Oguchi, H. (2000). Feeding-induced c-Fos expression in the nucleus of the solitary tract and dorsal medullary reticular formation in neonatal rats. Neuroscience Letters, 293, 175–178.

    Article  CAS  PubMed  Google Scholar 

  • Hofer, M. A., & Shair, H. (1982). Control of sleep-wake states in the infant rat by features of the mother-infant relationship. Developmental Psychobiology, 15, 229–243.

    Article  CAS  PubMed  Google Scholar 

  • Hogan, J. A. (2001). Development of behavior systems. In E. M. Blass (Ed.), Handbook of behavioral neurobiology (pp. 229–279). New York: Kluwer Academic.

    Google Scholar 

  • Hosoi, T., Kawagishi, T., Okuma, Y., Tanaka, J., & Nomura, Y. (2002). Brain stem is a direct target for leptin’s action in the central nervous system. Endocrinology, 143, 3498–3504.

    Article  CAS  PubMed  Google Scholar 

  • Houpt, K. A., & Epstein, A. N. (1973). Ontogeny of control of food intake in the rat: GI fill and glucoprivation. American Journal of Physiology, 225, 58–66.

    CAS  PubMed  Google Scholar 

  • Houpt, K. A., & Houpt, T. R. (1975). Effects of gastric loads and food deprivation on subsequent food intake in suckling rats. Journal of Comparative and Physiological Psychology, 88, 764–772.

    CAS  PubMed  Google Scholar 

  • Hudson, R., & Distel, H. (1999). The flavor of life: Perinatal development of odor and taste preferences. Schweiz Med Wochenschr, 129, 176–181.

    CAS  PubMed  Google Scholar 

  • Iriki, A., Nozaki, S., & Nakamura, Y. (1988). Feeding behavior in mammals: Corticobulbar projection is reorganized during conversion from sucking to chewing. Brain Research, 44, 189–196.

    Article  CAS  PubMed  Google Scholar 

  • Jahng, J. W., Houpt, T. A., Kim, S. J., Joh, T. H., & Son, J. H. (1998). Neuropeptide Y mRNA and serotonin innervation in the arcuate nucleus of anorexia mutant mice. Brain Research, 790, 67–73.

    Article  CAS  PubMed  Google Scholar 

  • Johanson, I. B., & Hall, W. G. (1979). Appetitive learning in 1-day-old rat pups. Science, 205, 419–421.

    CAS  PubMed  Google Scholar 

  • Kagotani, Y., Hashimoto, T., Tsuruo, Y., Kawano, H., Daikoku, S., & Chihara, K. (1989). Development of the neuronal system containing neuropeptide Y in the rat hypothalamus. International Journal of Developmental Neuroscience, 7, 359–374.

    Article  CAS  PubMed  Google Scholar 

  • Kaplan, J. M., Roitman, M., & Grill, H. J. (2000). Food deprivation does not potentiate glucose taste reactivity responses of chronic decerebrate rats. Brain Research, 870, 102–108.

    Article  CAS  PubMed  Google Scholar 

  • Kawai, Y., & Senba, E. (2000). Postnatal differentiation of local networks in the nucleus of the tractus solitarius. Neuroscience, 100, 109–114.

    Article  CAS  PubMed  Google Scholar 

  • Kehoe, P., & Blass, E. M. (1985). Gustatory determinants of suckling in albino rats 5–20 days of age. Developmental Psychobiology, 18, 67–82.

    Article  CAS  PubMed  Google Scholar 

  • Kornblith, C. L., & Hall, W. G. (1979). Brain transections selectively alter ingestion and behavioral activation in neonatal rats. Journal of Comparative and Physiological Psychology, 93, 1109–1117.

    CAS  PubMed  Google Scholar 

  • Kowalski, T. J., Houpt, T. A., Jahng, J., Okada, N., Chua, S. C., Jr., & Smith, G. P. (1998b). Ontogeny of neuropeptide Y expression in response to deprivation in lean Zucker rat pups. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 275, R466–R470.

    CAS  Google Scholar 

  • Kowalski, T. J., Ster, A. M., & Smith, G. P. (1998a). Ontogeny of hyperphagia in the Zucker (fa/fa) rat. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 275, R110–R1109.

    Google Scholar 

  • Lasiter, P. S., & Kachele, D. L. (1989). Postnatal development of protein P-38 (synaptophysin) immunoreactivity in pontine and medullary gustatory zones of rat. Developmental Brain Research, 48, 27–33.

    Article  CAS  PubMed  Google Scholar 

  • Lasiter, P. S., Wong, D. M., & Kachele, D. L. (1988). Postnatal development of the gustatory zone of the solitary nucleus in rat: Dendritic morphology and mitochondrial enzyme activity. Brain Research Bulletin, 21, 79–94.

    Article  CAS  PubMed  Google Scholar 

  • Lehtonen, J., Kononen, M., Purhonen, M., Partanen, J., Saarikoski, S., & Launiala, K. (1998). The effect of nursing on the brain activity of the newborn. Journal of Pediatrics, 132, 646–651.

    Article  CAS  PubMed  Google Scholar 

  • Leshem, M. (1981). Ontogeny of fenfluramine and amphetamine anorexia compared in rat pups. Pharmacology Biochemistry and Behavior, 15, 859–863.

    Article  CAS  Google Scholar 

  • Levine, A. S., & Billington, C. J. (1997). Why do we eat? A neural systems approach. Annual Review of Nutrition, 17, 597–619.

    Article  CAS  PubMed  Google Scholar 

  • Lorenz, D. N. (1983). Effects of gastric filling and vagotomy on ingestion, nipple attachment, and weight gain by suckling rats. Developmental Psychobiology, 16, 469–483.

    Article  CAS  PubMed  Google Scholar 

  • Lorenz, D. N., Poppe, C. J., Quail, C., Seipel, K., Stordeur, S. A., & Johnson, E. (1998). Filling the gut activates paradoxical sleep in suckling rats. Developmental Psychobiology, 32, 1–12.

    Article  CAS  PubMed  Google Scholar 

  • Maltais, L. J., Lane, P. W., & Beamer, W. G. (1984). Anorexia, a recessive mutation causing starvation in preweanling mice. Journal of Heredity, 75, 468–472.

    CAS  PubMed  Google Scholar 

  • Mansbach, R. S., & Lorenz, D. N. (1983). Cholecystokinin (CCK-8) elicits prandial sleep in rats. Physiology and Behavior, 30, 179–183.

    Article  CAS  PubMed  Google Scholar 

  • Martin, G. F., Cabana, T., Culberson, J. L., Curry, J. J., & Tschismadia, I. (1980). The early development of corticobulbar and corticospinal systems. Studies using the North American opossum. Anatomy and Embryology, 161, 197–213.

    Article  CAS  PubMed  Google Scholar 

  • Matson, C. A., Reid, D. F., Cannon, T. A., & Ritter, R. C. (2000). Cholecystokinin and leptin act synergistically to reduce body weight. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 278, R882–R890.

    CAS  PubMed  Google Scholar 

  • McCann, M. J., & Rogers, R. C. (1990). Oxytocin excites gastric-related neurones in rat dorsal vagal complex. Journal of Physiology, 428, 95–108.

    CAS  PubMed  Google Scholar 

  • Mercer, J. G., Moar, K. M., & Hoggard, N. (1998). Localization of leptin receptor (Ob-R) messenger ribonucleic acid in the rodent hindbrain. Endocrinology, 139, 29–34.

    Article  CAS  PubMed  Google Scholar 

  • Miller, A. J., McKoon, M., Pinneau, M., & Silverstein, R. (1983) Postnatal synaptic development of the nucleus tractus solitarius (NTS) of the rat. Developmental Brain Research, 8, 205–213.

    Article  Google Scholar 

  • Moorcroft, W. H., Lytle, L. D., & Campbell, B. A. (1971). Ontogeny of starvation-induced behavioral arousal in the rat. Journal of Comparative and Physiological Psychology, 75, 59–67.

    CAS  PubMed  Google Scholar 

  • Moran, T. H. (2000). Cholecystokinin and satiety: Current perspectives. Nutrition, 16, 858–865.

    Article  CAS  PubMed  Google Scholar 

  • Moran, T. H., Lew, M. F., & Blass, E. M. (1981). Intracranial self-stimulation in 3-day-old rat pups. Science, 214, 1366–1368.

    CAS  PubMed  Google Scholar 

  • Moran, T. H., Schwartz, G. J., & Blass, E. M. (1983). Organized behavioral responses to lateral hypothalamic electrical stimulation in infant rats. Journal of Neuroscience, 3, 10–19.

    PubMed  Google Scholar 

  • Nakamura, Y., Katakura, N., & Nakajima, M. (1999). Generation of rhythmical ingestive activities of the trigeminal, facial, and hypoglossal motoneurons in in vitro CNS preparations isolated from rats and mice. Journal of Medical and Dental Science, 46, 63–73.

    CAS  Google Scholar 

  • Nelson, E. E., & Alberts, J. R. (2002). Gastric saline infusion reduces ultrasonic vocalizations and brown fat activity in suckling rat pups. Developmental Psychobiology, 40, 160–167.

    Article  PubMed  Google Scholar 

  • Nozaki, S., Iriki, A., & Nakamura, Y. (1986). Role of corticobulbar projection neurons in cortically induced rhythmical masticatory jaw-opening movement in the guinea pig. Journal of Neurophysiology, 55, 826–845.

    CAS  PubMed  Google Scholar 

  • Olson, B. R., Drutarosky, M. C., Stricker, E. M., & Verbalis, J. G. (1991). Brain oxytocin receptor antagonism blunts the effects of anorexigenic treatments in rats: Evidence for central oxytocin inhibition of food intake. Endocrinology, 129, 785–791.

    CAS  PubMed  Google Scholar 

  • Olson, B. R., Freilino, M., Hoffman, G. E., Stricker, E. M., Sved, A. F., & Verbalis, J. G. (1993). c-Fos expression in rat brain and brainstem nuclei in reponse to treatments that alter food intake and gastric motility. Molecular and Cellular Neuroscience, 4, 93–106.

    Article  PubMed  CAS  Google Scholar 

  • Oppenheim, R. W. (1981). Ontogenetic adaptations and retrogressive processes in the development of the nervous system and behavior: A neuroembryological perspective. In K. J. Connolly & H. R. F. Prechtl (Eds.), Maturation and development: Biological and psychological perspectives (pp. 73–109). Philadelphia: Lippincott.

    Google Scholar 

  • Palkovits, M. (1999). Interconnections between the neuroendocrine hypothalamus and the central autonomic system. Frontiers in Neuroendocrinology, 20, 270–295.

    Article  CAS  PubMed  Google Scholar 

  • Peiser, C., Springer, J., Groneberg, D. A., McGregor, G. P., Fischer, A., & Lang, R. E. (2002). Leptin receptor expression in nodose ganglion cells projecting to the rat gastric fundus. Neuroscience Letters, 320, 41–44.

    Article  CAS  PubMed  Google Scholar 

  • Petrovich, G. D., Setlow, B., Holland, P. C., & Gallagher, M. (2002). Amygdalo-hypothalamic circuit allows learned cues to override satiety and promote eating. Journal of Neuroscience, 22, 8748–8753.

    CAS  PubMed  Google Scholar 

  • Phifer, C. B., Browde, J. A., Jr., & Hall, W. G. (1986). Ontogeny of glucose inhibition of independent ingestion in preweanling rats. Brain Research Bulletin, 17, 673–679.

    Article  CAS  PubMed  Google Scholar 

  • Phifer, C. B., Denzinger, A., & Hall, W. G. (1991a). The early presence of food-oriented appetitive behavior in developing rats. Developmental Psychobiology, 24, 453–461.

    Article  CAS  PubMed  Google Scholar 

  • Phifer, C. B., & Hall, W. G. (1988). Ingestive behavior in preweanling rats: Emergence of postgastric controls. American Journal of Physiology, 255, R191–R199.

    CAS  PubMed  Google Scholar 

  • Phifer, C. B., Ladd, M. D., & Hall, W. G. (1991b). Effects of hydrational state on ingestion in infant rats: Is dehydration the only ingestive stimulus? Physiology and Behavior, 49, 695–699.

    Article  CAS  PubMed  Google Scholar 

  • Powley, T. L., Martinson, F. A., Phillips, R. J., Jones, S., Baronowsky, E. A., & Swithers, S. E. (2001). Gastrointestinal projection maps of the vagus nerve are specified permanently in the perinatal period. Developmental Brain Research, 129, 57–72.

    Article  CAS  PubMed  Google Scholar 

  • Proulx, K., Richard, D., & Walker, C.-D. (2002). Leptin regulates appetite-related neuropeptides in the hypothalamus of developing rats without affecting food intake. Endocrinology, 143, 4683–4692.

    Article  CAS  PubMed  Google Scholar 

  • Rao, H., Jean, A., & Kessler, J.-P. (1997). Postnatal ontogeny of glutamate receptors in the rat nucleus tractus solitarii and ventrolateral medulla. Journal of the Autonomic Nervous System, 65, 25–32.

    Article  CAS  PubMed  Google Scholar 

  • Raybould, H. E. (1992). Vagal afferent innervation and the regulation of gastric motor function. In S. Ritter, R. C. Ritter, & C. D. Barnes (Eds.), Neuroanatomy and physiology of abdominal vagal afferents (pp. 195–219). Boca Raton, FL: CRC Press.

    Google Scholar 

  • Rayner, D. V., Dalgliesh, G. D., Duncan, J. S., Hardie, L. J., Hoggard, N., & Trayhurn, P. (1997). Postnatal development of the ob gene system: Elevated leptin levels in suckling fa/fa rats. Amercian Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 273, R446–R450.

    CAS  Google Scholar 

  • Reidelberger, R. D., & O’Rourke, M. F. (1989). Potent cholecystokinin antagonist L 364718 stimulates food intake in rats. American Journal of Physiology, 257, R1512–R1518.

    CAS  PubMed  Google Scholar 

  • Richards, W., Hillsley, K., Eastwood, C., & Grundy, D. (1996). Sensitivity of vagal mucosal afferents to cholecystokinin and its role in afferent signal transduction in the rat. Journal of Physiology London, 497, 473–481.

    CAS  Google Scholar 

  • Rinaman, L. (1998). Oxytocinergic inputs to the nucleus of the solitary tract and dorsal motor nucleus of the vagus in neonatal rats. Journal of Comparative Neurology, 399, 101–109.

    Article  CAS  PubMed  Google Scholar 

  • Rinaman, L. (2001). Postnatal development of catecholamine inputs to the paraventricular nucleus of the hypothalamus in rats. Journal of Comparative Neurology, 438, 411–422.

    Article  CAS  PubMed  Google Scholar 

  • Rinaman, L. (2003). Postnatal development of hypothalamic inputs to the dorsal vagal complex in rats. Physiology and Behavior, 79, 65–70.

    Article  CAS  PubMed  Google Scholar 

  • Rinaman, L., Baker, E. A., Hoffman, G. E., Stricker, E. M., & Verbalis, J. G. (1998). Medullary c-Fos activation in rats after ingestion of a satiating meal. American Journal of Physiology, 275, R262–R268.

    CAS  PubMed  Google Scholar 

  • Rinaman, L., Card, J. P., Schwaber, J. S., & Miselis, R. R. (1989). Ultrastructural demonstration of a gastric monosynaptic vagal circuit in the nucleus of the solitary tract in rat. Journal of Neuroscience, 9, 1985–1996.

    CAS  PubMed  Google Scholar 

  • Rinaman, L., Hoffman, G. E., Dohanics, J., Le, W. W., Stricker, E. M., & Verbalis, J. G. (1995). Cholecystokinin activates catecholaminergic neurons in the caudal medulla that innervate the paraventricular nucleus of the hypothalamus in rats. Journal of Comparative Neurology, 360, 246–256.

    Article  CAS  PubMed  Google Scholar 

  • Rinaman, L., Hoffman, G. E., Stricker, E. M., & Verbalis, J. G. (1994). Exogenous cholecystokinin activates c-Fos expression in medullary but not hypothalamic neurons in neonatal rats. Developmental Brain Reserach, 77, 140–145.

    Article  CAS  Google Scholar 

  • Rinaman, L., & Levitt, P. (1993). Establishment of vagal sensory-motor circuits during fetal development in rats. Journal of Neurobiology, 24, 641–659.

    Article  CAS  PubMed  Google Scholar 

  • Rinaman, L., Levitt, P., & Card, J. P. (2000). Progressive postnatal assembly of limbic-autonomic circuits revealed by central transneuronal transport of pseudorabies virus. Journal of Neuroscience, 20, 2731–2741.

    CAS  PubMed  Google Scholar 

  • Rinaman, L., & Rothe, E. E. (2002). GLP-1 receptor signaling contributes to anorexigenic effect of centrally administered oxytocin in rats. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 283, R99–R106.

    CAS  PubMed  Google Scholar 

  • Rinaman, L., Roesch, M. R., & Card, J. P. (1999). Retrograde transynaptic pseudorabies virus infection of central autonomic circuits in neonatal rats. Developmental Brain Research, 114, 207–216.

    Article  CAS  PubMed  Google Scholar 

  • Rinaman, L., Stricker, E. M., Hoffman, G. E., & Verbalis, J. G. (1997). Central c-Fos expression in neonatal and adult rats after subcutaneous injection of hypertonic saline. Neuroscience, 79, 1165–1175.

    Article  CAS  PubMed  Google Scholar 

  • Rinaman, L., Verbalis, J. G., Stricker, E. M., & Hoffman, G. E. (1993). Distribution and neurochemical phenotypes of caudal medullary neurons activated to express c-Fos following peripheral administration of cholecystokinin. Journal of Comparative Neurology, 338, 475–490.

    Article  CAS  PubMed  Google Scholar 

  • Ritter, S., Bugarith, K., & Dinh, T. T. (2001). Immunotoxic destruction of distinct catecholamine subgroups produces selective impairment of glucoregulatory responses and neuronal activation. Journal of Comparative Neurology, 432, 197–216.

    Article  CAS  PubMed  Google Scholar 

  • Ritter, S., & Dinh, T. T. (1984). 2-Mercaptoacetate and 2-deoxy-D-glucose induce Fos-like immunoreactivity in rat brain. Brain Research, 641, 111–120.

    Article  Google Scholar 

  • Robinson, P. H., Moran, T. H., Goldrich, M., & McHugh, P. R. (1987). Development of cholecystokinin binding sites in the rat upper gastrointestinal tract. American Journal of Physiology, 252, G529–G534.

    CAS  PubMed  Google Scholar 

  • Robinson, P. H., Moran, T. H., & McHugh, P. R. (1985). Gastric cholecystokinin receptors and the effect of cholecystokinin on feeding and gastric emptying in the neonatal rat. Annals of the New York Academy of Sciences, 448, 627–629.

    CAS  Google Scholar 

  • Robinson, P. H., Moran, T. H., & McHugh, P. R. (1988). Cholecystokinin inhibits independent ingestion in neonatal rats. American Journal of Physiology, 255, R14–R20.

    CAS  PubMed  Google Scholar 

  • Rogers, R. C., & Hermann, G. E. (1992). Central regulation of brainstem gastric vago-vagal control circuits. In S. Ritter, R. C. Ritter, & C. D. Barnes (Eds.), Neuroanatomy and physiology of abdominal vagal afferents, Boca Raton, FL: CRC Press.

    Google Scholar 

  • Rogers, R. C., McTigue, D. M., & Hermann, G. E. (1995). Vagovagal reflex control of digestion: Afferent modulation by neural and “endoneurocrine” factors. American Journal of Physiology, 268, G1–G10.

    CAS  PubMed  Google Scholar 

  • Rothman, T. P., Nilaver, G., & Gershon, M. D. (1984). Colonization of the developing murine enteric nervous system and subsequent phenotypic expression by the precursors of peptidergic neurons. Journal of Comparative Neurology, 225, 13–23.

    Article  CAS  PubMed  Google Scholar 

  • Sarnat, H. B. (1989). Do the corticospinal and corticobulbar tracts mediate functions in the human newborn? Canadian Journal of Neurological Sciences, 16, 157–160.

    CAS  PubMed  Google Scholar 

  • Sawchenko, P. E., & Swanson, L. W. (1981). Central noradrenergic pathways for the integration of hypothalamic neuroendocrine and autonomic responses. Science, 214, 685–687.

    CAS  PubMed  Google Scholar 

  • Sawchenko, P. E., & Swanson, L. W. (1982). The organization of noradrenergic pathways from the brainstem to the paraventricular and supraoptic nuclei in the rat. Brain Research Reviews, 4, 275–325.

    Article  Google Scholar 

  • Schwartz, G. J. (2000). The role of gastrointestinal vagal afferents in the control of food intake: Current prospects. Nature, 16, 866–873.

    CAS  Google Scholar 

  • Schwartz, G. J., McHugh, P. R., & Moran, T. H. (1993). Gastric loads and cholecystokinin synergistically stimulate rat gastric vagal afferents. American Journal of Physiology, 265, R872–R876.

    CAS  PubMed  Google Scholar 

  • Schwartz, G. J., & Moran, T. H. (2002). Leptin and neuropeptide Y have opposing modulatory effects on nucleus of the solitary tract neurophysiological responses to gastric loads: Implications for the control of food intake. Endocrinology, 143, 3779–3784.

    Article  CAS  PubMed  Google Scholar 

  • Seeley, R. J., & Schwartz, M. W. (1999). Neuroendocrine regulation of food intake. Acta Paediatrica, 88 (Suppl.), 58–61.

    Article  CAS  Google Scholar 

  • Shapiro, R. E., & Miselis, R. R. (1985). The central organization of the vagus nerve innervating the stomach of the rat. Journal of Comparative Neurology, 238, 473–488.

    Article  CAS  PubMed  Google Scholar 

  • Sim, L. J., & Joseph, S. A. (1991). Arcuate nucleus projections to brainstem regions which modulate nociception. Journal of Chemical Neuroanatomy, 4, 97–109.

    Article  CAS  PubMed  Google Scholar 

  • Sinding, C., Robinson, A. G., & Seif, S. M. (1980). Levels of neurohypophyseal peptides in the rat during the first month of life. II. Response to physiological stimuli. Endocrinology, 107, 755–760.

    Article  CAS  Google Scholar 

  • Singer, L. K., Kuper, J., Brogan, R. S., Smith, M. S., & Grove, K. L. (2000). Novel expression of hypothalamic neuropeptide Y during postnatal development in the rat. Neuroreport, 11, 1075–1080.

    CAS  PubMed  Google Scholar 

  • Smith, G. P. (1996). The direct and indirect controls of meal size. Neuroscience and Biobehavioral Reviews, 20, 41–46.

    Article  CAS  PubMed  Google Scholar 

  • Smith, G. P. (2000). The controls of eating: A shift from nutritional homeostasis to behavioral neuroscience. Nutrition, 16, 814–820.

    Article  PubMed  Google Scholar 

  • Specht, S. M., Burright, R. G., & Spear, L. P. (1996). Behavioral components of milk-induced activation in neonatal rat pups. Perceptual and Motor Skills, 83, 903–911.

    Google Scholar 

  • Stehling, O., Doring, H., Ertl, J., Preibisch, G., & Schmidt, I. (1996). Leptin reduces juvenile fat stores by altering the circadian cycle of energy expenditure. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 271, R1770–R1774.

    CAS  Google Scholar 

  • Streefland, C., & Jansen, K. (1999). Intramedullary projections of the rostral nucleus of the solitary tract in the rat: Gustatory influences on autonomic output. Chemical Senses, 24, 655–664.

    Article  CAS  PubMed  Google Scholar 

  • Stricker, E. M. (1984). Biological bases of hunger and satiety: Therapeutic implications. Nutrition Reviews, 42, 333–340.

    Article  CAS  PubMed  Google Scholar 

  • Stricker, E. M., & Verbalis, J. G. (1986). Interaction of osmotic and volume stimuli in regulation of neurohypophyseal secretion in rats. American Journal of Physiology, 250, R267–R275.

    CAS  PubMed  Google Scholar 

  • Swithers, S. E. (1995). Effects of physiological state on oral habituation in developing rats: Cellular and extracellular dehydration. Developmental Psychobiology, 28, 131–145.

    Article  CAS  PubMed  Google Scholar 

  • Swithers, S. E. (1997). Development of independent ingestive responding to blockade of fatty acid oxidation in rats. American Journal of Physiology, 273, R1649–R1656.

    CAS  PubMed  Google Scholar 

  • Swithers, S. E. (2000). Effects of metabolic inhibitors on ingestive behavior and physiology in preweanling rat pups. Appetite, 35, 9–25.

    Article  CAS  PubMed  Google Scholar 

  • Swithers, S. E., & Hall, W. G. (1989). A nutritive control of independent ingestion in rat pups emerges by nine days of age. Physiology and Behavior, 46, 873–879.

    Article  CAS  PubMed  Google Scholar 

  • Swithers, S. E., & Hall, W. G. (1994). Does oral experience terminate ingestion? Appetite, 23, 113–138.

    Article  CAS  PubMed  Google Scholar 

  • Swithers, S. E., Peters, R. L., & Shin, H. S. (1999). Behavioral specificity of effects of 2-mercaptoacetate on independent ingestion in developing rats. Developmental Psychobiology, 34, 101–107.

    Article  CAS  PubMed  Google Scholar 

  • Swithers, S. E., Westneat, M. W., & Hall, W. G. (1998). Electromyographic analysis of oral habituation in rat pups. Physiology and Behavior, 63, 197–203.

    Article  CAS  PubMed  Google Scholar 

  • Swithers-Mulvey, S. E., & Hall, W. G. (1993). Integration of oral habituation and gastric signals in decerebrate rat pups. American Journal of Physiology, 265, R216–R219.

    CAS  PubMed  Google Scholar 

  • Swithers-Mulvey, S. E., Mishu, K. R., & Hall, W. G. (1992). Oral habituation in rat pups is in the brainstem. Physiology and Behavior, 51, 639–642.

    Article  CAS  PubMed  Google Scholar 

  • Thexton, A. J., & Griffiths, C. (1979). Reflex oral activity in decerebrate rats of different ages. Brain Research, 175, 1–9.

    Article  CAS  PubMed  Google Scholar 

  • Tong, Y., Dumont, Y., Shen, S. H., & Quirion, R. (1997). Comparative developmental profile of the neuropeptide YY1 receptor gene and protein in the rat brain. Molecular Brain Research, 48, 323–332.

    Article  CAS  PubMed  Google Scholar 

  • Travers, J. B., & Norgren, R. (1986). Electromyographic analysis of the ingestion and rejection of sapid stimuli in the rat. Behavioral Neuroscience, 100, 544–555.

    Article  CAS  PubMed  Google Scholar 

  • Travers, J. B., & Rinaman, L. (2002). Identification of lingual motor control circuits using two strains of pseudorabies virus. Neuroscience, 115, 1139–1151.

    Article  CAS  PubMed  Google Scholar 

  • Tyrka, A., Gayle, C., & Smith, G. P. (1992). Raclopride decreases sucrose intake of rat pups in independent ingestion tests. Pharmacology Biochemistry and Behavior, 43, 863–869.

    Article  CAS  Google Scholar 

  • Tyrka, A., & Smith, G. P. (1991). Potency of SCH 23390 for decreasing sucrose intake in rat pups depends on mode of ingestion. Pharmacology Biochemistry and Behavior, 39, 955–961.

    Article  CAS  Google Scholar 

  • Uvnas-Moberg, K., Marchini, G., & Winberg, J. (1993). Plasma cholecystokinin concentrations after breast feeding in healthy 4-day-old infants. Archives of Disease in Childhood, 68, 46–48.

    Article  CAS  PubMed  Google Scholar 

  • van den Pol, A. N., Patrylo, P. R., Ghosh, P. K., & Gao, X. B. (2001). Lateral hypothalamus: Early developmental response and expression to hypocretin (orexin). Journal of Comparative Neurology, 433, 349–363.

    Article  Google Scholar 

  • Vincent, A., & Tell, F. (1999). Postnatal development of rat nucleus tractus solitarius neurons: Morphological and electrophysiological evidence. Neuroscience, 93, 293–305.

    Article  CAS  PubMed  Google Scholar 

  • Vogt, M. B., & Rudy, J. W. (1984). Ontogenesis of learning: I. Variation in the rat’s reflexive and learned responses to gustatory stimulation. Developmental Psychobiology, 17, 11–33.

    Article  CAS  PubMed  Google Scholar 

  • Watts, A. G. (2000). Understanding the neural control of ingestive behaviors: Helping to separate cause from effect with dehydration-associated anorexia. Hormones and Behavior, 37, 261–283.

    Article  CAS  PubMed  Google Scholar 

  • Weller, A. (2000). The ontogeny of postingestive intake inhibition in rats. Appetite, 34, 113.

    Article  CAS  PubMed  Google Scholar 

  • Weller, A., & Blass, E. M. (1988). Behavioral evidence for cholecystokin-opiate interactions in neonatal rats. American Journal of Physiology, 255, R901–R907.

    CAS  PubMed  Google Scholar 

  • Weller, A., Corp, E. S., Tyrka, A., Ritter, R. C., Brenner, L., Gibbs, J. et al. (1992). Trypsin inhibitor and maternal reunion increase plasma cholecystokinin in neonatal rats. Peptides, 13, 939–941.

    Article  CAS  PubMed  Google Scholar 

  • Weller, A., Gispan, I. H., & Smith, G. P. (1996). Postingestive inhibitory controls of independent ingestion in 12-day-old rats. Physiology and Behavior, 60, 361–364.

    Article  CAS  PubMed  Google Scholar 

  • Weller, A., Smith, G. P., & Gibbs, J. (1990). Endogenous cholecystokinin reduces feeding in young rats. Science, 247, 1589–1591.

    CAS  PubMed  Google Scholar 

  • Westneat, M. W., & Hall, W. G. (1992). Ontogeny of feeding motor patterns in infant rats: An electromyographic analysis of suckling and chewing. Behavioral Neuroscience, 106, 539–554.

    Article  CAS  PubMed  Google Scholar 

  • Whitnall, M. H., Key, S., Ben-Barak, Y., Ozato, K., & Gainer, H. (1985). Neurophysin in the hypothalamoneurohypophyseal system. II. Immunocytochemical studies of the ontogeny of oxytocinergic and vasopressinergic neurons. Journal of Neuroscience, 5, 98–109.

    CAS  PubMed  Google Scholar 

  • Williams, C. L., & Blass, E. M. (1987). Development of postglucoprivic insulin-induced suckling and feeding in rats. American Journal of Physiology, 253, R121–R127.

    CAS  PubMed  Google Scholar 

  • Williams, G., Bing, C., Cai, X. J., Harrold, J. A., King, P. J., & Liu, X. H. (2001). The hypothalamus and the control of energy homeostasis—different circuits, different purposes. Physiology and Behavior, 74, 683–701.

    Article  CAS  PubMed  Google Scholar 

  • Willie, J. T., Chemelli, R. M., Sinton, C. M., & Yanagisawa, M. (2001). To eat or to sleep? Orexin in the regulation of feeding and wakefulness. Annual Review of Neuroscience, 24, 429–458.

    Article  CAS  PubMed  Google Scholar 

  • Winn, P. (1995). The lateral hypothalamus and motivated behavior: An old syndrome reassessed and a new perspective gained. Current Directions in Physiological Science, 4, 182–187.

    Article  Google Scholar 

  • Wolgin, D. L. (2002). Effects of chronic amphetamine on the appetitive and consummatory phases of feeding. Appetite, 38, 221–223.

    Article  CAS  PubMed  Google Scholar 

  • Woodhams, P. L., Allen, Y. S., McGovern, J., Allen, J. M., Bloom, S. R., Balazs, R. et al. (1985). Immunohistochemical analysis of the early ontogeny of the neuropeptide Y system in rat brain. Neuroscience, 15, 173–202.

    Article  CAS  PubMed  Google Scholar 

  • Woods, S. C., & Seeley, R. J. (2000). Adiposity signals and the control of energy homeostasis. Nutrition, 16, 894–902.

    Article  CAS  PubMed  Google Scholar 

  • Woods, S. C., Seeley, R. J., Porte, D., Jr., & Schwartz, M. W. (1998). Signals that regulate food intake and energy homeostasis. Science, 280, 1378–1383.

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto, Y., Ueta, Y., Hara, Y., Serino, R., Nomura, M., Shibuya, I. et al. (2000). Postnatal development of orexin/hypocretin in rats. Molecular Brain Research, 78, 108–119.

    Article  CAS  PubMed  Google Scholar 

  • Yuan, C. S., Attele, A. S., Dey, L., & Xie, J. T. (2000). Gastric effects of cholecystokinin and its interaction with leptin on brainstem neuronal activity in neonatal rats. Journal of Pharmacology and Experimental Therapeutics, 295, 177–182.

    CAS  PubMed  Google Scholar 

  • Yuan, C. S., Attele, A. S., Wu, J. A., Zhang, L., & Shi, Z. Q. (1999). Peripheral gastric leptin modulates brain stem neuronal activity in neonates. American Journal of Physiology, 277, G626–G630.

    CAS  PubMed  Google Scholar 

  • Zhang, L.-L., & Ashwell, K. W. S. (2001). The development of cranial nerve and visceral afferents to the nucleus of the solitary tract in the rat. Anatomy and Embryology, 204, 135–151.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, Y., Proenca, R., Maffei, M., Barone, M., Leopold, L., & Friedman, J. M. (1994). Positional cloning of the mouse obese gene and its human homologue. Nature, 372, 425–432.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science + Business Media, Inc.

About this chapter

Cite this chapter

Rinaman, L. (2004). Postnatal Development of Central Feeding Circuits. In: Stricker, E.M., Woods, S.C. (eds) Neurobiology of Food and Fluid Intake. Handbook of Behavioral Neurobiology, vol 14. Springer, Boston, MA. https://doi.org/10.1007/0-306-48643-1_8

Download citation

  • DOI: https://doi.org/10.1007/0-306-48643-1_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-48484-1

  • Online ISBN: 978-0-306-48643-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics