Skip to main content

Time Resolved Protein Fluorescence. Application to Multi-Tryptophan Proteins

  • Conference paper
Supramolecular Structure and Function 8
  • 281 Accesses

Conclusions

Recent work has clearly shown that it is possible to explain the different lifetimes of a single Trp-residues in terms of the possibility of having different rotameric states that interconvert only slowly if at all. The dead end elimination method has allowed us to explore these rotamers and in many cases links could be made with lifetimes on the basis of differences in accessibility. Experimental indications for the existence of different rotameric states are becoming available. The ultimate proof for the existence of different microstates that slowly interconvert would come from lifetime measurements on isolated (single) molecules of single-tryptophan proteins. But this is not an easy task, in view of the low photostability of Trp. Finally the analysis of the electron transfer as presented here can only be considered to be a pragmatic description and the parameters obtained have to used with great care in view of the selection of “simple” Trp-environments. For more complex environments a thorough quantum mechanical calculation, using the charge transfer model presented by Callis and Vivian might be necessary for each individual case.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Weber, G., 1997, Fluorescence in biophysics: accomplishments and deficiencies, Methods Enzym. 218: 1–15.

    Google Scholar 

  2. Longworth, J.W., 1983, Intrinsic fluorescence of proteins. In: Time-Resolved Fluorescence Spectroscopy in Biochemistry and Biology (R.B. Cundall and R.E. Dale, eds.), Nato ASI series. Series A: Life Sciences, Vol 69: 651–725.

    Google Scholar 

  3. Brochon, J.C., 1994, Maximum entropy method of data analysis in time-resolved spectroscopy. Methods Enzym. 240: 262–311.

    CAS  Google Scholar 

  4. Birch, D.J.S. and Imhof, R.E., 1991, Time-Domain Fluorescence Spectroscopy Using Time-Correlated Single-Photon Counting. Topics in Fluorescence Spectroscopy 1:1, 1–95 in (J.R. Lakowicz, ed.), Plenum Press, New York & London.

    Google Scholar 

  5. Lakowicz, J.R. and Gryczynski, I., 1991, Frequency-Domain Fluorescence Spectroscopy. In: Topics in Fluorescence Spectroscopy 1:5, 293–335, (J.R. Lakowicz, ed.), Plenum Press, New York & London.

    Google Scholar 

  6. Munro, I.H. and Martin, M.M., 1991, Time-Resolved Fluorescence Spectroscopy Using Synchrotron Radiation. Topics in Fluorescence Spectroscopy 1:4, 261–291 in Lakowicz, J.R. Ed. Plenum Press, New York & London.

    Google Scholar 

  7. Lakowicz, J.R., 1999, Principles of Fluorescence Spectroscopy, 2 nd edition, Kluwer Academic/Plenum publishers, New York, Boston, Dordrecht, London, Moscow.

    Google Scholar 

  8. Engelborghs, Y., 2003, Correlating Protein Structure and Protein Fluorescence. J. Fluorescence 13: 9–16.

    Article  CAS  Google Scholar 

  9. Vos, R., Engelborghs, Y., Izard, J. and Baty, D., 1995, Fluorescence Study of the Three Tryptophan Residues of the Pore-Forming Domain of Colicin A Using Multifrequency Phase Fluorometry. Biochemistry, 34: 1734–1743.

    Article  PubMed  CAS  Google Scholar 

  10. Spande, T.F., Green, N.M., Witkop, B., 1966, The reactivity toward N-bromosuccinimide of tryptophan in enzymes, zymogens, and inhibited enzymes. Biochemistry, 5: 1926–1933.

    Article  PubMed  CAS  Google Scholar 

  11. Sillen, A., Vos, R. and Engelborghs, Y., 1996, Fluorescence Study of the Conformational Properties of Recombinant Tick Anticoagulant Peptide (Ornithodorus moubata) Using Multifrequency Phase Fluorometry. Photochem. Photobiol. 64: 785–791.

    PubMed  CAS  Google Scholar 

  12. Peterman, B.F. and Laidler, K.J., 1980, Study of Reactivity of Tryptophan Residues in Serum Albumins and Lysozyme by N-Bromosuccinamide Fluorescence Quenching. Arch. Biochem. Biophys. 199: 158–164.

    Article  PubMed  CAS  Google Scholar 

  13. Eftink, M., 1983, Quenching-resolved emission anisotropy studies with single and multitryptophan-containing proteins. Biophys.J., 43: 323–334.

    PubMed  CAS  Google Scholar 

  14. Willis, K.J., Szabo, A.G. and Krajcarski, D.T., 1991, Fluorescence decay kinetics of the tryptophyl residues of myoglobin single-crystals. J. Am. Chem. Soc., 113: 2000–2002.

    Article  CAS  Google Scholar 

  15. Waldman, A.D., Clarke, A.R., Wigley, D.B., Hart, K.W., Chia, W.N., Barstow, D., Atkinson, T., Munro, I. and Holbrook, J.J., 1987, The use of site-directed mutagenesis and time-resolved fluorescence Spectroscopy to assign the fluorescence contributions of individual tryptophan residues in Bacillus stearothermophilus lactate dehydrogenase. Biochim. Biophys. Acta 913: 66–71.

    PubMed  CAS  Google Scholar 

  16. Ellis, J., Bagshaw, C.R. and Shaw, W.V., 1995, Tryptophan fluorescence of chloramphenicol acetyltransferase: resolution of individual excited-state lifetimes by site-directed mutagenesis and multifrequency phase fluorometry. Biochemistry, 34: 3513–3520.

    PubMed  CAS  Google Scholar 

  17. Willaert, K., Loewenthal, R., Sancho, J., Froeyen, M., Fersht, A. and Engelborghs, Y., 1992, Determination of the excited-state lifetimes of the tryptophan residues in barnase, via multifrequency phase fluorometry of tryptophan mutants. Biochemistry 31: 711–716.

    Article  PubMed  CAS  Google Scholar 

  18. De Beuckeleer, K, Volckaert, G. and Engelborghs, Y., 1999, Time Resolved Fluorescence and Phosphorescence Properties of the Individual Tryptophan Residues of Barnase: Evidence for Protein-Protein Interactions. Proteins 36: 42–53.

    PubMed  Google Scholar 

  19. Royer, C.A., Gardner, J.A., Beechem, J.M., Brochon, J.-C. and Matthews, K.S., 1990, Resolution of the fluorescence decay of the two tryptophan residues of lac repressor using single tryptophan mutants. Biophys. J., 58: 363–378.

    PubMed  CAS  Google Scholar 

  20. Axelsen, P.H., Bajer, Z., Prendergast, F.G., Cottam, P.F. and Ho, C., 1991, Resolution of fluorescence intensity decays of the two tryptophan residues in glutamine-binding protein from Escherichia coli using single tryptophan mutants, Biophys. J., 60: 650–659.

    PubMed  CAS  Google Scholar 

  21. Fetler, L., Tauc, P., Hervé, G., Ladjimi, M.M. and Brochon, J.-C., 1992, The tryptophan residues of aspartate transcarbamylase: site directed mutagenesis and time-resolved fluorescence Spectroscopy. Biochemistry, 31: 12504–12513.

    Article  PubMed  CAS  Google Scholar 

  22. Bombarda, E., Ababou, A., Vuillemier, C., Gérard, D., Roques, B.P., Piémont, E. and Mély, Y., 1999, Time-resolved fluorescence investigation of the human immunodeficiency virus type 1 nucleocapsid protein: influence of the binding of nucleic acids. Biophys. J., 76: 1561–1570.

    PubMed  CAS  Google Scholar 

  23. Verheyden, S., Sillen, A., Gils, A., Declerck, P.J., and Engelborghs, Y., 2003, Tryptophan Properties in Fluorescence and Functional Stability of Plasminogen Activator Inhibitor 1. Biophysical J. 85: 501–510.

    CAS  Google Scholar 

  24. Sillen, A. and Engelborghs, Y., 1998, The Correct Use of “Average” Fluorescence Parameters. Photochem. Photobiol., 76: 475–486.

    Google Scholar 

  25. Sillen, A., Hennecke, J., Roethlisberger, D., Glockshuber, R. and Engelborghs, Y., 1999, Fluorescence Quenching in the DsbA Protein from Escherichia coli: Complete Picture of the Excited-State Energy Pathway and Evidence for the Reshuffling Dynamics of the Microstates of Tryptophan. Proteins: Struct. Funct. Genet. 37: 253–263.

    CAS  Google Scholar 

  26. Fersht, A.R., 1993, The sixth Datta Lecture. Protein folding and stability: the pathway of folding of barnase. FEBS Letters 325: 5–16.

    Article  PubMed  CAS  Google Scholar 

  27. Schreiber, G. and Fersht, A.R., 1995, Energetics of protein-protein interactions: analysis of the barnase-barstar interface by single mutations and double mutant cycles. J. Mol. Biol. 248: 478–486.

    PubMed  CAS  Google Scholar 

  28. Zegers, I., Deswarte, J. and Wyns, L., 1999, Trimeric domain-swapped barnase. Proc. Natl. Acad. Sci. USA 96: 818–822.

    Article  PubMed  CAS  Google Scholar 

  29. Loewenthal, R., Sancho, J, Reinikanen, T. and Fersht, A.R., 1993, Long-range surface charge-charge interactions in proteins. Comparison of experimental results with calculations from a theoretical method. J.Mol. Biol. 232: 574–583.

    Article  PubMed  CAS  Google Scholar 

  30. Bastyns, K., Froeyen, M., Diaz, J.F., Volckaert, G. and Engelborghs, Y., 1996, Experimental and theoretical study of electrostatic effects on the isoelectric pH and the pKa of the catalytic residue His-102 of the recombinant ribonuclease from Bacillus amyloliquefaciens (barnase). Proteins: Struct. Funct. Genet. 24: 370–378.

    CAS  Google Scholar 

  31. Loewenthal, R., Sancho, J. and Fersht, A.R., 1991, Fluorescence spectrum of barnase: contributions of three tryptophan residues and a histidine-related pH dependence. Biochemistry 30: 6775–6779.

    Article  PubMed  CAS  Google Scholar 

  32. Porter, G.B., 1972, reversible energy-transfer. Theor. Chim. Acta 24: 265–270.

    Article  CAS  Google Scholar 

  33. Woolley, P., Steinhäuser, K.G. and Epe, B., 1987, Forster-type energy transfer. Simultaneous “forward” and “reverse” transfer between unlike fluorophores. Biophys. Chem., 26: 367–374.

    Article  CAS  PubMed  Google Scholar 

  34. Doyle, T.C., Hansen, J.E. and Reisler, E., 2001, Tryptophan fluorescence of yeast actin resolved via conserved mutations. Biophys. J. 80: 427–434.

    PubMed  CAS  Google Scholar 

  35. Mély, Y., De Rocquigny, H., Morellet, N., Roques, B.P. and Gérard, D., 1996, Zinc binding to the HIV-1 nucleocapsid protein: a thermodynamic investigation by fluorescence spectroscopy. Biochemistry 35: 5175–5182.

    PubMed  Google Scholar 

  36. Vuillemier, C., Bombarda, E., Morellet, N., Gérard, D., Roques, B.P. and Mély, Y., 1999, Nucleic acid sequence discrimination by the HIV-1 nucleocapsid protein NCp7: a fluorescence study. Biochemistry 38: 16816–16825.

    Google Scholar 

  37. Callis, P.R. and Burgess, B.K., 1997, Tryptophan fluorescence shifts in proteins from hybrid simulations: an electrostatic approach J. Phys. Chem. B, 101: 9429–9432.

    Article  CAS  Google Scholar 

  38. Callis, P.R., 1997, 1La and 1Lb transitions of tryptophan: applications of theory and experimental observations to fluorescence of proteins, Methods Enzymol., 278: 113–150.

    PubMed  CAS  Google Scholar 

  39. Gopalan, V., Golbik, R., Schreiber, G., Fersht, A.R. and Altman, S., 1997, Fluorescence Properties of a Tryptophan Residue in an Aromatic Core of the Protein Subunit of Ribonuclease P from Escherichia coli. J. Mol. Biol., 267: 765–769.

    PubMed  CAS  Google Scholar 

  40. Nanda, V. and Brand, L., 2000, Aromatic Interactions in Homeodomains Contribute to the Low Quantum Yield of a Conserved, Buried Tryptophan. Proteins 40: 112–125.

    Article  PubMed  CAS  Google Scholar 

  41. Burley, S.K. and Petsko, G.A., 1985, Aromatic-aromatic interaction: a mechanism of protein structure stabilization. Science 229: 23–28.

    PubMed  CAS  Google Scholar 

  42. Burley, S.K. and Petsko, G.A., 1986, Amino-aromatic interactions in proteins. FEBS Lett., 203: 139–143.

    Article  PubMed  CAS  Google Scholar 

  43. Burstein, E.A. and Emelyanenko, 1996, Log-normal description of fluorescence spectra of organic fluorophores. Photochem. Photobiol., 64: 316–320.

    CAS  Google Scholar 

  44. Burstein, E.A., Abornev, S.M., Reshetnyak, Y.K., 2001, Decomposition of protein tryptophan fluorescence spectra into log-normal components. I. Decomposition algorithms. BiophysJ. 81: 1699–1709.

    CAS  Google Scholar 

  45. Reshetnyak, Y.K., Burstein, E.A., 2001, Decomposition of protein tryptophan fluorescence spectra into log-normal components. II. The statistical proof of discreteness of tryptophan classes in proteins. BiophysJ., 81: 1710–1734.

    CAS  Google Scholar 

  46. Reshetnyak, Y.K., Koshevnik, Y., Burstein, E.A., 2001, Decomposition of protein tryptophan fluorescence spectra into log-normal components. III. Correlation between fluorescence and microenvironment parameters of individual tryptophan residues. Biophys J., 81: 1735–1758.

    PubMed  CAS  Google Scholar 

  47. Parker, C.A. and Rees, W.T., 1960, Correction of Fluorescence Spectra and Measurements of Fluorescence Quantum Efficiency. Analyst. 85: 587–600.

    CAS  Google Scholar 

  48. Chen, Y. and Barkley, M.D., 1998, Toward Understanding Tryptophan Fluorescence in Proteins. Biochemistry 37: 9976–9982.

    PubMed  CAS  Google Scholar 

  49. Chen, R.F., Knutson, J.R., Ziffer, H. and Porter, D., 1991, Fluorescence of Tryptophan Dipeptides: Correlations with the Rotamer Model. Biochemistry 30: 5184–5195.

    PubMed  CAS  Google Scholar 

  50. Szabo, A.G. and Faerman, C., 1992, Dilemma of Correlating Fluorescence Quantum Yields and Intensity Decay Times in Single Tryptophan Mutant Proteins. SPIE, 1640: 70–80.

    CAS  Google Scholar 

  51. Webber, S.E., 1997, The Role of Time-Dependent Measurements in Elucidating Static Versus Dynamic Quenching Processes. Photochem. Photobiol. 65: 33–38.

    CAS  Google Scholar 

  52. Strickler, S.J. and Berg, R.A., 1962, J. Chem. Phys. 37: 814.

    Article  CAS  Google Scholar 

  53. Mach, H., Middaugh, C.R. and Lewis, R.V., 1992, Statistical Determination of the Average Values of the Extinction Coefficients of Tryptophan and Tyrosine in Native Proteins. Anal. Biochem. 200: 74–80.

    PubMed  CAS  Google Scholar 

  54. Sillen, A., Diaz, F. and Engelborghs, Y., 2000, A step toward the prediction of the fluorescence lifetimes of tryptophan residues in proteins based on structural and spectral data. Protein Sci. 9: 158–169.

    PubMed  CAS  Google Scholar 

  55. Sillen, A., personal communication.

    Google Scholar 

  56. Privat, J.P., Wahl, P. and Auchet, J.-C., 1979, Rates of deactivation processes of indole derivatives in water-organic solvent mixtures. —Applications to tryptophyl fluorescence of proteins. Biophys. Chem. 9: 223–233.

    Article  PubMed  CAS  Google Scholar 

  57. Eftink, M.R., 2001, Intrinsic Fluorescence of Proteins. In: Topics in Fluorescence Spectroscopy 6: Lakowicz, J.R. Ed. pp. 1–16.

    Google Scholar 

  58. Döring, K., Konermann, L., Surrey, T. and Jähnig, F., 1995, A long lifetime component in the tryptophan fluorescence of some proteins. Eur. Biophys. J. 23: 423–432.

    PubMed  Google Scholar 

  59. Chen, Y., Liu, B., Yu, H.-T. and Barkley, M.D., 1996, The Peptide Bond Quenches Indole Fluorescence. J.Am.Chem.Soc. 118: 9271–9278.

    CAS  Google Scholar 

  60. Klein, R., Tatischeff, I., Bazin, M. and Santus, R., 1981, Photophysics of indole-comparative-study of quenching, solvent, and temperature effects by laser flash-photolysis and fluorescence. J. Phys. Chem. 85: 670–677.

    Article  CAS  Google Scholar 

  61. Connolly, M.L., 1983, Solvent-accessible surfaces of proteins and nucleic acids. Science 221: 709–713.

    PubMed  CAS  Google Scholar 

  62. Yu, H.T., Colucci, W.J., McLaughlin, M.L. and Barkley, M.D., 1992, Fluorescence quenching in indoles by excited-state proton-transfer. Am. Chem. Soc. 114: 8449–8454.

    CAS  Google Scholar 

  63. Eftink, M.R., Jia, Y., Hu, D. and Ghiron, C.A., 1995, Fluorescence studies with tryptophan analogs-excited-state interactions involving the side-chain amino group. J. Phys. Chem. 99: 5713–5723.

    Article  CAS  Google Scholar 

  64. Bushueva, T.L., Busel, E.P. and Burstein, E.A., 1975, Interaction of protein functional groups with indole chromophore.3. amine, amide, and thiol-groups. Stud. Biophysica 52: 41–52.

    CAS  Google Scholar 

  65. Cowgill, R.W., 1967, Fluorescence and protein structure. XI. Fluorescence quenching by disulfide and sulfhydryl groups. Biochim. Biophys. Acta 140: 37–44.

    CAS  Google Scholar 

  66. Steiner, R.F. and Kirby, E.P., 1969, The Interaction of the Ground and Excited States of Indole Derivatives with Electron Scavengers. J. Phys. Chem. 73: 4130–4135.

    Article  PubMed  CAS  Google Scholar 

  67. Yuan, T., Weljie, A.M. and Vogel, H.J., 1998, Tryptophan fluorescence quenching by methionine and selenomethionine residues of calmodulin: orientation of peptide and protein binding. Biochemistry 37: 3187–3195.

    Article  PubMed  CAS  Google Scholar 

  68. Shinitzky, M. and Goldman, R., 1967, Fluorometric detection of histiine-tryptophan complexes in peptides and proteins. Eur. J. Biochem., 3: 139–144.

    PubMed  CAS  Google Scholar 

  69. Bushueva, T.L., Busel, E.P., Bushuev, V.N. and Burstein, E.A., 1974, Interaction of protein functional groups with indole chromophore. 1. imidazole group. Studia Biophys. Berlin, 44: 129–140.

    CAS  Google Scholar 

  70. Van Gilst, M. and Hudson, B.S., 1996, Histidine-tryptophan interactions in T4 lysozyme: ‘anomalous’ pH dependence of fluorescence. Biophys. Chem. 63: 17–25.

    PubMed  Google Scholar 

  71. Vos, R. and Engelborghs, Y., 1994, A fluorescence study of tryptophan-histidine interactions in the peptide anantin and in solution. Photochem. Photobioi, 60: 24–32.

    CAS  Google Scholar 

  72. Weisenborn, P.C.M, Meder, H., Egmond, M.R., Visser, T.J.W.G. and van Hoek, 1996, Photophysics of the single tryptophan residue in fusarium solani cutinase: evidence for the occurrence of conformational substates with unusual fluorescence behaviour A., Biophys. Chem. 58: 281–288.

    Article  CAS  PubMed  Google Scholar 

  73. Prompers, J.J., Hilbers, C.W. and Pepermans, H.A.M., 1999, Tryptophan mediated photoreduction of disulfide bond causes unusual fluorescence behaviour of Fusarium solani pisi cutinase. FEBS Letters 456, 409–416.

    Article  PubMed  CAS  Google Scholar 

  74. Neves-Petersen, M.T., Gryczynski, Z., Lakowicz, J., Fojan, P., Pedersen, S., Petersen, E. and Petersen, S.B., 2002, High probability of disrupting a disulphide bridge mediated by an endogenous excited tryptophan residue. Protein Science 11: 588–600.

    Article  PubMed  CAS  Google Scholar 

  75. Vanhooren, A., Devreese, B., Vanhee, K., Van Beeumen, J. and Hanssens, I., 2002, Photoexcitation of Tryptophan Groups Induces Reduction of Two Disulfide Bonds in Goat α-lactalbumine. Biochemistry 41: 11035–11043.

    Article  PubMed  CAS  Google Scholar 

  76. Hennecke, J., Sillen, A., Huber-Wunderlich, M., Engelborghs, Y. and Glockshuber, R., 1997, Quenching of tryptophan fluorescence by the active-site disulfide bridge in the DsbA protein from Escherichia coli. Biochemistry 36: 6391–6400.

    Article  PubMed  CAS  Google Scholar 

  77. Ricci, R.W. and Nesta, J.M., 1976, Inter-and Intramolecular Quenching of Indole Fluorescence by Carbonyl Compounds, J. Phys. Chem., 80: 974–980.

    Article  CAS  Google Scholar 

  78. Chang, M.C., Petrich, J.W., McDonald, D.B. and Fleming, G.R., 1983, Non-exponential fluorescence decay of tryptophan, tryptophylglycine, and glycyltryptophan. J.Am.Chem.Soc. 105: 3819–3824.

    CAS  Google Scholar 

  79. Goldman, C., Pascutti, P.G., Piquini, P., Ito, A.S., 1995, On the contribution of electron transfer reactions to the quenching of tryptophan fluorescence. J. Chem. Phys. 103: 10614–10620.

    Article  CAS  Google Scholar 

  80. Antonini, P.S., Hillen, W., Ettner, N., Hinichs, W., Fantucci, P., Doglia, S.M., Bousquet, J.-A, and Chabbert, M., 1997, Molecular mechanics analysis of Tet repressor TRP-43 fluorescence. Biophys. J. 72: 1800–1811.

    CAS  Google Scholar 

  81. Pan, C.-P., Adams, P.D. and Barkley, M.D., 2000, Effect of backbone conformation on tryptophan fluorescence in rigid cyclic hexapeptides. Biophys. J. 78: (part 2) pos 746.

    Google Scholar 

  82. Marcus, R.A. and Suttin, N., 1985, Electron transfers in chemistry and biology. Biochim. Biophys. Acta 811: 265–322.

    CAS  Google Scholar 

  83. Hellings, M., De Maeyer, M., Verheyden, S., Hao, Q., Van Damme, E.J.M., Peumans, W.J. and Engelborghs, Y. 2003, The Dead-End Elimination Method, Tryptophan Rotamers, and Fluorescence Lifetimes, Biophys. J. 85: 1894–1902.

    PubMed  CAS  Google Scholar 

  84. Vander Donckt, E., Bull. Soc. Chim. Belges 78: (1969) 69.

    CAS  Google Scholar 

  85. Callis, P. R., and Vivian, J.T., 2003, Understanding the variable fluorescence quantum yield of tryptophan in proteins using qm-mm simulations, quenching by charge transfer to the peptide backbone. Chem. Phys. Let., 369: 409–414

    Article  CAS  Google Scholar 

  86. Frauenfelder, H., Parak, F. and Young, R.D., 1988, Conformational substates of proteins: a molecular dynamics analysis of myoglobin. Ann. Rev. Biophys. Chem. 17: 451–579.

    Article  CAS  Google Scholar 

  87. Elber, R. and Karplus, M., 1987, Multiple conformational states of proteins: a molecular dynamics analysis of myoglobin. Science 235: 318–321.

    PubMed  CAS  Google Scholar 

  88. Noguti, T. and , N., 1989, Structural basis of hierarchical multiple substates of a protein. III: Side chain and main chain local conformations. Proteins 5: 113–124.

    PubMed  CAS  Google Scholar 

  89. Eftink, M. and Hagaman, X., 1985, Fluorescence quenching of the buried tryptophan residue of cod parvalbumin. Biophys Chem., 22: 173–180.

    Article  PubMed  CAS  Google Scholar 

  90. Harris, D.L. and Hudson, B.S., 1990, Photophysics of tryptophan in bacteriophage T4 lysozymes. Biochemistry 29: 5276–5285.

    Article  PubMed  CAS  Google Scholar 

  91. Kim, S.J., Chowdhury, F.N., Stryjewski, W., Younathan, E.S., Russo, P.S. and Barkley, M.D., 1993, Time-resolved fluorescence of the single tryptophan of Bacillus stearothermophilus phosphofructokinase. Biophys. J. 65: 215–226.

    PubMed  CAS  Google Scholar 

  92. Szabo, A.G., Krajcarski, D., Zuker, M. and Alpert, B., 1984, Conformational heterogeneity in hemoglobin as determined by picosecond fluorescence decay. Chem. Phys. Lettters 108:145–149.

    CAS  Google Scholar 

  93. Gauduchon, P. and Wahl, Ph., 1978, Pulsefluorimetry of tyrosyl peptides. Biophys. Chem. 8: 87–104.

    Article  PubMed  CAS  Google Scholar 

  94. Szabo, A.G. and Rayner, D.M., 1980, Fluorescence Decay of Tryptophan Conformers in Aqueous Solution, J. Am. Chem. Soc. USA, 102: 554–563.

    CAS  Google Scholar 

  95. Engh, R.A., Chen, L.X.-Q. and Fleming, G.R., 1986, Conformational dynamics of tryptophan-a proposal for the origin of the nonexponential fluorescence decay. Chem. Phys. Letters 126: 365–371.

    CAS  Google Scholar 

  96. Lakowicz, J.R., Maliwil, B.P., Cherek, H. and Balter, A., 1983, Rotational freedom of tryptophan residues in proteins and peptides. Biochemistry 22: 1741–1752.

    PubMed  CAS  Google Scholar 

  97. Lakowicz, J.R., 2000, On spectral relaxation in proteins. Photochem. Photobiol, 72: 421–437.

    Article  PubMed  CAS  Google Scholar 

  98. Laws, W.R., Ross, J.B.A., Wyssbrod, H.R., Beechem, J.-M., Brand, L. and Sutherland, J.C., 1986, Time-resolved fluorescence and 1H NMR studies of tyrosine and tyrosine analogues: correlation of NMR-determined rotamer populations and fluorescence kinetics. Biochemistry 25: 599–607.

    Article  PubMed  CAS  Google Scholar 

  99. Ross, J.B.A., Wyssbrod, H.R., Porter, R.A., Schwartz, G.P., Michaels, C.A. and Laws, W.R., 1992, Correlation of tryptophan fluorescence intensity decay parameters with 1H NMR-determined rotamer conformations: [tryptophan2]oxytocin. Biochmistry 31: 1585–1594.

    CAS  Google Scholar 

  100. Janin, J., Wodak, J., Levitt, M. and Maigret, B., 1978, Conformation of amino acid side-chains in proteins. J. Mol. Biol. 125: 357–386.

    Article  PubMed  CAS  Google Scholar 

  101. Bath, T.N., Sasisekharan, V. and Vijayan, M., 1979, An analysis of side-chain conformation in proteins. Int. J. Protein Res. 13: 170–184.

    Google Scholar 

  102. Summers, N.L., Carlson, W.D. and Karplus, M., 1987, Analysis of side-chain orientations in homologous proteins. J. Mol. Biol 196: 175–198.

    Article  PubMed  CAS  Google Scholar 

  103. McGregor, M.J., Islam, S.A. and Sternberg, M.J.E., 1987, Analysis of the Relationship Between Side-chain Conformation and Secondary Structure in Globular Proteins, J. Mol. Biol. 198: 295–310.

    Article  PubMed  CAS  Google Scholar 

  104. Schrauber, H., Eisenhaber, F. and Argos, P., 1993, Rotamers: Tobe or not to be? An Analysis of Amino Acid Side-chain Conformations in Globular Proteins. J. Mol. Biol. 230: 592–612.

    Article  PubMed  CAS  Google Scholar 

  105. Clayton, A.H.A. and Sawyer, W.H., 1999, The structure and orientation of class-A amphipathic peptides on a phospholipid bilayer surface, Eur. Biophys. J. 28: 133–141.

    Article  PubMed  CAS  Google Scholar 

  106. Clayton, A.H.A. and Sawyer, W.H., 1999, Tryptophan Rotamer Distributions in Amphipathic Peptides at a Lipid Surface, Biophys. J. 76: 3235–3242.

    PubMed  CAS  Google Scholar 

  107. Willis, K.J., Neugebauer, W., Sikorska, M. and Szabo, A.G., 1994, Probing alpha-helical secondary structure at a specific site in model peptides via restriction of tryptophan side-chain rotamer conformation. Biophys. J, 66: 1623–1630.

    PubMed  CAS  Google Scholar 

  108. Mérola, F., Rigler, R., Holmgren, A. and Brochon, J.-C., 1989, Picosecond tryptophan fluorescence of thioredoxin: evidence for discrete species in slow exchange. Biochemistry 28: 3383–3398.

    PubMed  Google Scholar 

  109. Tanaka, F. and Mataga, N., 1982, Dynamic depolarization of interacting fluorophores. Effect of internal rotation and energy transfer. Biophys. J. 39: 129–140

    PubMed  CAS  Google Scholar 

  110. Tanaka, F. and Mataga, N., 1987, Fluorescence quenching dynamics of tryptophan in proteins. Effect of internal rotation under potential barrier. Biophys. J. 51: 487–495.

    PubMed  CAS  Google Scholar 

  111. Tanaka, F., Kaneda, N., Mataga, N., Tamai, N., Yamazaki, I. and Hayashi, K., 1987, Analyses of nonexponential fluorescence decay functions of a single tryptophan residue in erabutoxin-b. J. Phys. Chem. 91: 6344–6346.

    CAS  Google Scholar 

  112. Tanaka, F., Tamai, N., Mataga, N., Tonomura, B. and Hiromi, K., 1994, Analysis of internal motion of single tryptophan in Streptomyces subtilisin inhibitor from its picosecond time-resolved fluorescence. Biophys. J. 67: 874–880.

    PubMed  CAS  Google Scholar 

  113. Van Gilst, M., Tang, C., Roth, A. and Hudson, B., 1994, Quenching Interactions and Nonexponential Decay: Tryptophan 138 of Bacteriophage T4 Lysozyme, J. Fluorescence 4: 203–207.

    Article  Google Scholar 

  114. Hudson, B.S., 1999, An ionization/recombination mechanism for complexity of the fluorescence of tryptophan in proteins. Acc. Chem. Res. 32: 297–300.

    Article  CAS  Google Scholar 

  115. Bernasconi, C.F., Relaxation Kinetics, Academic Press, New York & San Francisco, 1976.

    Google Scholar 

  116. McMahon, L.P., Yu, H.-T., Vela, M.A., Morales, G.A., Shui, L., Fronczek, F.R., McLaughlin, M.L. and Barkley, M.D., 1997, Conformer interconversion in the excited state of constrained tryptophan derivatives. J. Phys. Chem. B 101: 3269–3280.

    Article  CAS  Google Scholar 

  117. Boens, N., Szubiakowski, J. and Novikov, E., Ameloot, M., 2000, Testing the identifiability of a model for reversible intermolecular two-state excited state processes. J. Chem. Phys. 112: 8260–8266.

    Article  CAS  Google Scholar 

  118. Brochon, J.-C., Wahl, P., Charlier, M., Maurizot, J.C. and Hélene, C., 1977, Time resolved spectroscopy of the tryptophyl fluorescence of the E. coli LAC repressor. Biochem. Biophys. Res. Commun. 79: 1261–1271.

    Article  PubMed  CAS  Google Scholar 

  119. Gastmans, M., Volckaert, G. and Engelborghs, Y., Tryptophan Microstate reshuffling Upon the Binding of Cyclosporin A to Human Cyclophilin A, 1999, Proteins: Struct. Fund. Genet. 35: 464–474.

    Article  CAS  Google Scholar 

  120. Guddat, L.W., Bardwell, J.C., Zander, T. and Martin, J.L., 1997, The uncharged surface features surrounding the active site of Escherichia coli DsbA are conserved and are implicated in peptide binding. Protein Sci 6: 1148–1156.

    PubMed  CAS  Google Scholar 

  121. Guddat, L.W., Bardwell, J. and Martin, J.L., 1998, Crystal structures of reduced and oxidized DsbA: investigation of domain motion and thiolate stabilization. Structure 6: 757–767.

    Article  CAS  PubMed  Google Scholar 

  122. Schirra, H.J., Renner, C., Czisch, M., Huber-Wunderlich, M., Holak, T.A. and Glockshuber, R., 1998, Structure of reduced DsbA from Escherichia coli in solution. Biochemistry 37: 6263–6276.

    Article  PubMed  CAS  Google Scholar 

  123. Martin, J.L., 1995, Thioredoxin-A fold for all reasons. Structure 3: 245–250.

    Article  CAS  PubMed  Google Scholar 

  124. Engelborghs, Y., 2001, The analysis of time resolved protein fluorescence in multitryptophan proteins. Spectrachim. Acta Part A 57: 2255–2270.

    CAS  Google Scholar 

  125. Moncrieffe, M.C., Venyaminov, S.Y., Miller, T.E., Guzman, G., Potter, J.D. and Prendergast, F.G., 1999, Optical spectroscopic characterization of single tryptophan mutants of chicken skeletal troponin C: evidence for interdomain interaction. Biochemistry 39: 11973–11983.

    Google Scholar 

  126. Hofmann, A., Raguénes-Nicol, C., Favier-Perron, B., Mesonero, J., Huber, R., Russo-Marie, F. and Lewit-Bentley, A., 2000, The annexin A3-membrane interaction is modulated by an N-terminal tryptophan. Biochemistry 39: 7712–7721.

    Article  PubMed  CAS  Google Scholar 

  127. Soulages, J.L. and Arrese, E.L., 2000, Fluorescence spectroscopy of single tryptophan mutants of apolipophorin-III in discoidal lipoproteins of dimyristoylphosphatidylcholine. Biochemistry 39: 10574–10580.

    Article  PubMed  CAS  Google Scholar 

  128. Rensland, H., John, J., Linke, R., Simon, I., Schlichting, I., Wittinghofer, A. and Goody, R., 1995, Substrate and product structural requirements for binding of nucleotides to H-ras p21: the mechanism of discrimination between guanosine and adenosine nucleotides. Biochemistry 34: 593–599.

    Article  PubMed  CAS  Google Scholar 

  129. Díaz, J.F., Sillen, A. and Engelborghs, Y., 1997, Equilibrium and kinetic study of the conformational transition toward the active state of p21Ha-ras, induced by the binding of BeF3-to the GDP-bound state, in the absence of GTPase-activating proteins. J. Biol. Chem. 272: 23138–23143.

    PubMed  Google Scholar 

  130. Kuppens, S., Díaz, J.F. and Engelborghs, Y., 1999, Characterization of the hinges of the effector loop in the reaction pathway of the activation of ras-proteins. Kinetics of binding of beryllium trifluoride to V29G and I36G mutants of HA-ras-p21, Protein Sci. 8: 1860–1866.

    PubMed  CAS  Google Scholar 

  131. Hazlett, T.L., Moore, K.J., Lowe, P.N., Jameson, D.M. and Eccleston, J.F., 1993, Solution dynamics of p21ras proteins bound with fluorescent nucleotides. Biochemistry 32: 13575–13583.

    Article  PubMed  CAS  Google Scholar 

  132. Jameson, D.M. and Eccleston, J.F., 1997, Fluorescent nucleotide analogs: synthesis and applications. Methods Enzymol. 278: 363–390.

    PubMed  CAS  Google Scholar 

  133. Ross JB, Szabo AG, Hogue CW., 1997, Enhancement of protein spectra with tryptophan analogs: fluorescence spectroscopy of protein-protein and protein-nucleic acid interactions. Methods Enzymol., 278: 151–190.

    PubMed  CAS  Google Scholar 

  134. Bergstrom F, Hagglof P, Karolin J, Ny T, Johansson LB., 1999, The use of site-directed fluorophore labeling and donor-donor energy migration to investigate solution structure and dynamics in proteins. Proc. Natl. Acad. Sci USA, 96: 12477–12481.

    PubMed  CAS  Google Scholar 

  135. Deprez, E., Tauc, P., Leh, H., Mouscadet, J.-F., Auclair, C. and Brochon, J.-C., 2000, Oligomeric states of the HIV-1 integrase as measured by time-resolved fluorescence anisotropy. Biochemistry 39: 9275–9284.

    Article  PubMed  CAS  Google Scholar 

  136. Fa, M., Bergström, F., Hägglöf, P., Wilczynska, M, Johansson, L.B. and Ny, T., 2000, The structure of a serpin-protease complex revealed by intramolecular distance measurements using donor-donor energy migration and mapping of interaction sites. Structure Fold. Des. 8: 397–405.

    CAS  PubMed  Google Scholar 

  137. Fa, M., Bergström, F., Karolin, J., Johansson, L.B. and Ny, T., 2000, Conformational studies of plasminogen activator inhibitor type 1 by fluorescence spectroscopy. Analysis of the reactive centre of inhibitory and substrate forms, and of their respective reactivecentre cleaved forms. Eur. J. Biochem. 267: 3729–3734.

    Article  PubMed  CAS  Google Scholar 

  138. Chadborn, N., Bryant, J., Bain, A.J. and O’Shea, P., 1999, Ligand-Dependent Conformational Equilibria of Serum Albumin Revealed by Tryptophan Fluorescence Quenching. Biophys. J. 76: 2198–2207.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science + Business Media, Inc.

About this paper

Cite this paper

Engelborghs, Y. (2005). Time Resolved Protein Fluorescence. Application to Multi-Tryptophan Proteins. In: Pifat-Mrzljak, G. (eds) Supramolecular Structure and Function 8. Springer, Boston, MA. https://doi.org/10.1007/0-306-48662-8_5

Download citation

  • DOI: https://doi.org/10.1007/0-306-48662-8_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-48661-6

  • Online ISBN: 978-0-306-48662-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics