Skip to main content

Potential of Branching Processes as a Modeling Tool for Conservation Biology

  • Chapter
Quantitative Methods for Conservation Biology

Conclusion

The canonical structure of BPs and the theoretical results available allow us to handle, within the same conceptual framework, PVA models with a variety of demographic features. The reader interested in applying BPs structures and results to a specific PVA has the choice between developing his or her own model and using a generic extinction simulation tool (for a review of some of these models, see Lindenmayer et al. 1995). Among generic simulation tools, the latest version of the software ULM (Legendre and Clobert 1995) takes explicitly into account the theoretical results presented here.

Last, the tuning of a BP model to a specific population-environment system based on empirical data will meet problems of parameter estimation in small populations and of detection and assessment of a specific functional form of density dependence. These questions, which depend critically on the quality of the data available, are, however, not specific to BPs. Classically, the range of strategies thus spreads from a detailed PVA model, relying on extensive data (as in, e.g., Woolfenden and Fitzpatrick 1991), to a series of different scenarios corresponding to varying assumptions and parameter values, when data are not sufficient.

Deterministic theory in population ecology thus seems to be of little help in providing a framework for probability theory. We had better not adhere too much to our deterministic concepts and ideas, but start afresh. —J. Reddingius (1971)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  • Asmussen S, Hering H (1983) Branching processes. Birkhäuser, Boston, MA

    Google Scholar 

  • Athreya KB, Karlin S (1971) Branching processes with random environments. I Annals of Mathematical Statistics 42:1499–1520; II Annals of Mathematical Statistics 42:1843–1858

    Google Scholar 

  • Athreya KB, Ney PE (1972) Branching processes. Springer Verlag, New York

    Google Scholar 

  • Bagley JH (1982) Asymptotic properties of subcritical Galton-Watson processes. Journal of Applied Probability 19:510–517

    Article  Google Scholar 

  • Bairlein F (1991) Population studies of White Storks Ciconia ciconia in Europe. In: Perrins CM, Lebreton J-D, Hirons GJM (eds) Bird population studies: relevance to conservation and management. Oxford University Press, Oxford, UK, pp 207–229

    Google Scholar 

  • Bart J (1995) Evaluation of population trend estimates calculated using capture recapture and population projection methods. Ecological Applications 5:662–671

    Article  Google Scholar 

  • Beissinger SR (1995) Modeling extinction in periodic environments: Everglades water levels and Snail Kite population viability. Ecological Applications 5:618–631

    Article  Google Scholar 

  • Box GEP, Jenkins GM (1970) Time series analysis forecasting and control. Holden-Day, San Francisco, CA

    Google Scholar 

  • Boyce MS (1992) Population viability analysis. Annual Review of Ecology and Systematics 23:481–506

    Article  Google Scholar 

  • Burkey TV (1989) Extinction in nature reserves: the effect of fragmentation and the importance of migration between reserve fragments. Oikos 55:75–81

    Google Scholar 

  • Caswell H (1989) Matrix population models. Sinauer, Sunderland, MA

    Google Scholar 

  • Chesson P (1978) Predator-prey theory and variability. Annual Review of Ecology and Systematics 9:323–347

    Article  Google Scholar 

  • Cohen JE (1969) Natural primate troops and a stochastic population model. American Naturalist 103:455–477

    Article  Google Scholar 

  • Day JR, Possingham HP (1995) A stochastic metapopulation model with variability in patch size and position. Theoretical Population Biology 48:333–360

    Article  Google Scholar 

  • DeAngelis DL (1976) Application of stochastic models to a wildlife population. Mathematical Biosciences 31:227–236

    Article  Google Scholar 

  • Dennis B, Munholland PL, Scott JM (1991) Estimation of growth and extinction parameters for endangered species. Ecological Monographs 61:115–143

    Article  Google Scholar 

  • Durrett R, Levin S (1994) The importance of being discrete (and spatial). Theoretical Population Biology 46:363–394

    Article  Google Scholar 

  • Eberhardt LL (1985) Assessing the dynamics of wild populations. Journal of Wildlife Management 49:997–1012

    Google Scholar 

  • Facelli JM, Pickett STA (1990) Markovian chains and the role of history in succession. TREE 5:27–30

    Google Scholar 

  • Gabriel W, Bürger R (1992) Survival of small populations under demographic stochasticity. Theoretical Population Biology 41:44–71

    Article  CAS  PubMed  Google Scholar 

  • Galton F (1873) Problem 4001. Educational Times 17

    Google Scholar 

  • Gilpin ME (1987) Spatial structure and population variability. In: Soulé ME (ed) Viable populations for conservation. Cambridge University Press, Cambridge, UK, pp 125–140

    Google Scholar 

  • Gilpin ME, Soulé ME (1986) Minimum viable populations: the processes of species extinctions. In: Soulé ME (ed) Conservation biology: science of scarcity and diversity. Sinauer, Sunderland, MA, pp 13–34

    Google Scholar 

  • Ginzburg LR, Slobodkin LB, Johnson K, Bindman AG (1982) Quasiextinction probabilities as a measure of impact on population growth. Risk Analysis 2:171–181

    Google Scholar 

  • Goodman D (1987) The demography of chance extinction. In: Soulé ME (ed) Viable populations for conservation. Cambridge University Press, Cambridge, UK, pp 11–34

    Google Scholar 

  • Gosselin F (1996) Extinction in a simple source/sink system: application of new mathematical results. Acta Oecologica 17:563–584

    Google Scholar 

  • Gosselin F (1997) Modèles stochastiques d’extinction de population: propriétés mathématiques et leurs applications. Unpublished PhD thesis, Paris 6 University, Paris

    Google Scholar 

  • Gosselin F (1998a) Asymptotic behaviour of some discrete-time Markov chains conditional on non-extinction. I-Theory. Mimeographed research report 98-04. Biometrics Unit, INRA/ENSAM/University Montpellier II, France

    Google Scholar 

  • Gosselin F (1998b) Asymptotic behaviour of some discrete-time Markov chains conditional on non-extinction. II-Applications. Mimeographed research report 98-05, Biometrics Unit, INRA/ENSAM/University Montpellier II, France

    Google Scholar 

  • Gosselin F (1998c) Reconciling theoretical approaches to stochastic patch-occupancy metapopulation models. Bulletin of Mathematical Biology 60:955–971

    Article  Google Scholar 

  • Gosselin F (1998d) Asymptotic behavior of some discrete time Markov chains conditional on non-extinction. I-Theory; II-Applications. Technical Reports 98-04, 98-05. Groupe de Biostatistique et d’Analyse des Systèms. Université de Montpellier II, France

    Google Scholar 

  • Gyllenberg M, Silvestrov DS (1994) Quasi-stationary distributions of a stochastic metapopulation model. Journal of Mathematical Biology 33:35–70

    Google Scholar 

  • Hanski I (1994) A practical model of metapopulation dynamics. Journal of Animal Ecology 63:151–162

    Google Scholar 

  • Hanski I, Woiwod IP (1993) Spatial synchrony in the dynamics of moth and aphid populations. Journal of Animal Ecology 62:656–668

    Google Scholar 

  • Heathcote CR, Seneta E, Vere-Jones D (1967) A refinement of two theorems in the theory of branching processes. Theory of Probability and Its Applications 12:342–346

    Article  Google Scholar 

  • Jagers P (1975) Branching processes with biological applications. Wiley, London

    Google Scholar 

  • Joffe A, Spitzer F (1967) On multitype branching processes with ρ ≤ 1. Journal of Mathematical Analysis and Applications 19:409–430

    Article  Google Scholar 

  • Kanyamibwa S (1991) Dynamique des populations de Cigogne Blanche (Ciconia Ciconia L) en Europe Occidentale: contribution à la conservation des populations naturelles. Unpublished thesis, Montpellier II University, Montpellier, France

    Google Scholar 

  • Kanyamibwa S, Lebreton JD (1992) Variation des effectifs de Cigogne Blanche et facteurs du milieu: un modèle démographique. In: Mériaux JL, Schierer A, Tombal C, Tombal JC (eds) Les cigognes d’Europe. Institut Européen d’Ecologie, Metz, France, pp 259–264

    Google Scholar 

  • Kanyamibwa S, Schierer A, Pradel R, Lebreton J-D (1990) Changes in adult survival rates in a western European population of the White Stork Ciconia ciconia. Ibis 132:27–35

    Google Scholar 

  • Kanyamibwa S, Bairlein F, Schierer A (1993) Comparison of survival rates between populations of the White Stork Ciconia ciconia in central Europe. Ornis Scandinavica 24:297–302

    Google Scholar 

  • Lande R (1988) Genetics and demography in biological conservation. Science 241:1455–1460

    CAS  PubMed  Google Scholar 

  • Lande R (1993) Risks of population extinction from demographic and environmental stochasticity and random catastrophes. American Naturalist 142:911–927

    Article  Google Scholar 

  • Lande R, Orzack SH (1988) Extinction dynamics of age-structured populations in a fluctuating environment. Proceedings of the National Academy of Sciences of the USA 85:7418–7421

    CAS  PubMed  Google Scholar 

  • Lebreton J-D (1978) Un modèle probabiliste de la dynamique des populations de la Cigogne Blanche (Ciconia ciconia L) en Europe Occidentale. In: Legay JM, Tomassone R (eds) Biométrie et Ecologie. Société de Biométrie, Paris, pp 277–343

    Google Scholar 

  • Lebreton J-D (1981) Contribution á la dynamique des populations d’oiseaux. Modèles mathématiques en temps discret. Unpublished thesis, Lyon I University, Villeurbanne, France

    Google Scholar 

  • Lebreton J-D (1982) Applications of discrete time branching processes to bird population dynamics modelling. In: ANAIS da 10 a conferência Internacional de Biometria. EMBRAPA-DID/DMQ/Sociedade Internacional de Biometria, Brasil, pp 115–133

    Google Scholar 

  • Lebreton J-D (1990) Modelling density dependence environmental variability and demographic stochasticity from population counts: an example using Wytham Wood Great Tits. In: Blondel J, Gosler A, Lebreton J-D, McCleery R (eds) Population biology of passerine birds: an integrated approach. NATO ASI series. Series G: Ecological sciences, vol 24. Springer Verlag, Berlin, pp 89–102

    Google Scholar 

  • Lebreton J-D, Clobert J (1991) Bird population dynamics management and conservation: the role of mathematical modeling. In: Perrins CM, Lebreton J-D, Hirons GJM (eds) Bird population studies: relevance to conservation and management. Oxford University Press, Oxford, UK, pp 105–125

    Google Scholar 

  • Legendre S, Clobert J (1995) ULM: a software for conservation and evolutionary biologists. Journal of Applied Statistics 22:817–834

    Article  Google Scholar 

  • Lindenmayer DB, Burgman MA, Akçakaya HR, Lacy RC, Possingham HR (1995) A review of the generic computer programs ALEX RAMAS/space and VORTEX for modelling the viability of wildlife metapopulations. Ecological Modelling 82:161–174

    Article  Google Scholar 

  • Malthus TR (1798) An essay on the principle of population, as it affects the future improvements of society, with remarks on the speculations of Mr. Godwin, M. Condorcet, and other writers. John Murray, London

    Google Scholar 

  • Mangle M, Tier C (1993) Dynamics of metapopulations with demographic stochasticity and environmental catastrophes. Theoretical Population Biology 44:1–31

    Article  Google Scholar 

  • McCarthy MA, Franklin DC, Burgman MA (1994) The importance of demographic uncertainty: an example from the Helmeted Honeyeater. Biological Conservation 67:135–142

    Article  Google Scholar 

  • Mode CJ, Jacobson ME (1987a) A study of the impact of environmental stochasticity on extinction probabilities by Monte Carlo integration. Mathematical Biosciences 83:105–125

    Article  Google Scholar 

  • Mode CJ, Jacobson ME (1987b) On estimating population size for an endangered species in the presence of environmental stochasticity. Mathematical Biosciences 85:185–209

    Article  Google Scholar 

  • Mode CJ, Pickens GT (1986) Demographic stochasticity and uncertainty in population projections—a study by computer simulation. Mathematical Biosciences 79:55–72

    Article  Google Scholar 

  • North PM, Boddy AW, Forrester DR (1988) A computer simulation study of stochastic models to investigate the population dynamics of the Screech Owl (Otus asio) under increased mortality. Ecological Modelling 40:233–263

    Article  Google Scholar 

  • Nunney L, Campbell KA (1993) Assessing minimum viable population size: demography meets population genetics. TREE 8:234–239

    Google Scholar 

  • Pollard JH (1966) On the use of the direct matrix product in analysing certain stochastic population models. Biometrika 53:397–415

    Article  Google Scholar 

  • Reddingius J (1971) Gambling for existence. Acta Biotheoretica 20 Suppl:1–208

    Article  Google Scholar 

  • Schneider RR, Yodzis P (1994) Extinction dynamics in the American Marten (Martes americana). Conservation Biology 8:1058–1068

    Article  Google Scholar 

  • Seneta E, Vere-Jones D (1966) On quasi-stationary distributions in discrete-time Markov chains with a denumerable infinity of states. Journal of Applied Probability 3:403–434

    Article  Google Scholar 

  • Shaffer M (1987) Minimum viable populations: coping with uncertainty. In: Soulé ME (eds) Viable populations for conservation. Cambridge University Press, Cambridge, UK, pp 69–86

    Google Scholar 

  • Shaffer ML (1981) Minimum population sizes for species conservation. Bioscience 31:131–134

    Article  Google Scholar 

  • Smith WL, Wilkinson WE (1969) On branching processes in random environments. Annals of Mathematical Statistics 40:814–827

    Google Scholar 

  • Stacey PB, Taper M (1992) Environmental variation and the persistence of small populations. Ecological Applications 2:18–29

    Article  Google Scholar 

  • Tuljapurkar S (1990) Population dynamics in variable environments. Lecture Notes in Biomathematics 85. Springer-Verlag, New York

    Google Scholar 

  • Verboom J, Lankester K, Metz JAJ (1991) Linking local and regional dynamics in stochastic metapopulation models. Biological Journal of the Linnean Society 42:39–55

    Google Scholar 

  • Wissel C (1989) Metastability a consequence of stochastics in multiple stable population dynamics. Theoretical Population Biology 36:296–310

    Article  Google Scholar 

  • Wissel C, Stöcker S (1991) Extinction of populations by random influences. Theoretical Population Biology 39:315–328

    Article  Google Scholar 

  • Wissel C, Zaschke S-H (1994) Stochastic birth and death processes describing minimum viable populations. Ecological Modelling 75/76:193–201

    Article  Google Scholar 

  • Woolfenden GE, Fitzpatrick JW (1991) Florida Scrub Jay ecology and conservation. In: Perrins CM, Lebreton J-D, Hirons GJM (eds) Bird population studies: relevance to conservation and management. Oxford University Press, Oxford, UK, pp 542–565

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Gosselin, F., Lebreton, JD. (2000). Potential of Branching Processes as a Modeling Tool for Conservation Biology. In: Quantitative Methods for Conservation Biology. Springer, New York, NY. https://doi.org/10.1007/0-387-22648-6_13

Download citation

  • DOI: https://doi.org/10.1007/0-387-22648-6_13

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-95486-8

  • Online ISBN: 978-0-387-22648-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics