Skip to main content

Proteases in Traumatic Brain Injury

  • Chapter
Proteases In The Brain

Part of the book series: Proteases In Biology and Disease ((PBAD,volume 3))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  • Abraham CR, Kanemaru K, Mucke L, 1993, Expression of cathepsin G-like and alpha 1-antichymotrypsin-like proteins in reactive astrocytes. Brain Res 621:222–232.

    Article  CAS  PubMed  Google Scholar 

  • Adamec E, Mohan PS, Cataldo AM, Vonsattel JP, Nixon RA, 2000, Up-regulation of the lysosomal system in experimental models of neuronal injury: implications for Alzheimer’s disease. Neuroscience 100:663–675.

    Article  CAS  PubMed  Google Scholar 

  • Armao D, Kornfeld M, Estrada EY, Grossetete M, Rosenberg GA, 1997, Neutral proteases and disruption of the blood-brain barrier in rat. Brain Res 767:259–264.

    Article  CAS  PubMed  Google Scholar 

  • Bahr BA, Bendiske J, 2002, The neuropathogenic contributions of lysosomal dysfunction. J Neurochem 83:481–489.

    Article  CAS  PubMed  Google Scholar 

  • Bank U, Reinhold D, Schneemilch C, Kunz D, Synowitz HJ, Ansorge S, 1999, Selective proteolytic cleavage of IL-2 receptor and IL-6 receptor ligand binding chains by neutrophil-derived serine proteases at foci of inflammation. J Interferon Cytokine Res 19: 1277–1287.

    Article  CAS  PubMed  Google Scholar 

  • Bank U, Ansorge S, 2001, More than destructive: neutrophil-derived serine proteases in cytokine bioactivity control. J Leukoc Biol 69:197–206.

    CAS  PubMed  Google Scholar 

  • Beer R, Franz G, Schopf M, Reindl M, Zelger B, Schmutzhard E, Poewe W, Kampfl A, 2000a, Expression of Fas and Fas ligand after experimental traumatic brain injury in the rat. J Cereb Blood Flow Metab 20:p669–677.

    CAS  PubMed  Google Scholar 

  • Beer R, Franz G, Srinivasan A, Hayes R, Pike B, Newcomb J, Zhao X, Schmutzhard E, Poewe W, Kampfl A, 2000b, Temporal profile and cell subtype distribution of activated caspase-3 following experimental traumatic brain injury. J Neurochem 75:1264–1273.

    Article  CAS  PubMed  Google Scholar 

  • Beer R, Franz G, Krajewski S, Pike BR, Hayes RL, Reed JC, Wang KK, Klimmer C, Schmutzhard E, Poewe W, Kampfl A, 2001, Temporal and spatial profile of caspase 8 expression and proteolysis after experimental traumatic brain injury. J Neurochem 78: 862–873.

    Article  CAS  PubMed  Google Scholar 

  • Bidere N, Lorenzo HK, Carmona S, Laforge M, Harper F, Dumont C, Senik A, 2003, Cathepsin D triggers Bax activation, resulting in selective apoptosis-inducing factor (AIF) relocation in T lymphocytes entering the early commitment phase to apoptosis. J Biol Chem 278:31401–31411.

    Article  CAS  PubMed  Google Scholar 

  • Bittigau P, Sifringer M, Pohl D, Stadthaus D, Ishimaru M, Shimizu H, Ikeda M, Lang D, Speer A, Olney JW, Ikonomidou C, 1999, Apoptotic neurodegeneration following trauma is markedly enhanced in the immature brain. Ann Neurol 45:724–735.

    Article  CAS  PubMed  Google Scholar 

  • Bizat N, Hermel JM, Humbert S, Jacquard C, Creminon C, Escartin C, Saudou F, Krajewski S, Hantraye P, Brouillet E, 2003, In vivo calpain/caspase cross-talk during 3-nitropropionic acid-induced striatal degeneration: implication of a calpain-mediated cleavage of active caspase-3. J Biol Chem 278:43245–43253.

    Article  CAS  PubMed  Google Scholar 

  • Blomgren K, Zhu C, Wang X, Karlsson JO, Leverin AL, Bahr BA, Mallard C, Hagberg H, 2001, Synergistic activation of caspase-3 by m-calpain after neonatal hypoxia-ischemia: a mechanism of “pathological apoptosis”? J Biol Chem 276:10191–10198.

    Article  CAS  PubMed  Google Scholar 

  • Bonnefoy A, Legrand C, 2000, Proteolysis of subendothelial adhesive glycoproteins (fibronectin, thrombospondin, and von Willebrand factor) by plasmin, leukocyte cathepsin G, and elastase. Thromb Res 98:323–332.

    Article  CAS  PubMed  Google Scholar 

  • Brana C, Benham CD, Sundstrom LE, 1999, Calpain activation and inhibition in organotypic rat hippocampal slice cultures deprived of oxygen and glucose. Eur J Neurosci 11:2375–2384.

    Article  CAS  PubMed  Google Scholar 

  • Brömme D, Kaleta J, 2002, Thiol-dependent cathepsins: pathophysiological implications and recent advances in inhibitor design. Curr Pharm Des 8:1639–1658.

    PubMed  Google Scholar 

  • Buck MR, Karustis DG, Day NA, Honn KV, Sloane BF, 1992, Degradation of extracellular-matrix proteins by human cathepsin B from normal and tumour tissues. Biochem J 282(Pt 1):273–278.

    CAS  PubMed  Google Scholar 

  • Buki A, Siman R, Trojanowski JQ, Povlishock JT, 1999, The role of calpain-mediated spectrin proteolysis in traumatically induced axonal injury. J Neuropathol Exp Neurol 58: 365–375.

    CAS  PubMed  Google Scholar 

  • Buki A, Okonkwo D, Wang K, Povlishock J, 2000, Cytochrome c release and caspase activation in traumatic axonal injury. J Neurosci 20: p2825–2834.

    CAS  PubMed  Google Scholar 

  • Buki A, Farkas O, Doczi T, Povlishock JT, 2003, Preinjury administration of the calpain inhibitor MDL-28170 attenuates traumatically induced axonal injury. J Neurotrauma 20: 261–268.

    Article  CAS  PubMed  Google Scholar 

  • Cain K, Bratton SB, Cohen GM, 2002, The Apaf-1 apoptosome: a large caspase-activating complex. Biochimie 84:203–214.

    Article  CAS  PubMed  Google Scholar 

  • Carafoli E, Molinari M, 1998, Calpain: a protease in search of a function? Biochem Biophys Res Commun 247:193–203.

    Article  CAS  PubMed  Google Scholar 

  • Carlos TM, Clark RS, Franicola-Higgins D, Schiding JK, Kochanek PM, 1997, Expression of endothelial adhesion molecules and recruitment of neutrophils after traumatic brain injury in rats. J Leukoc Biol 61:279–285.

    CAS  PubMed  Google Scholar 

  • Chang HY, Yang X, 2000, Proteases for cell suicide: functions and regulation of caspases. Microbiol Mol Biol Rev 64:821–846.

    CAS  PubMed  Google Scholar 

  • Charriaut-Marlangue C, Ben-Ari Y, 1995, A cautionary note on the use of the TUNEL stain to determine apoptosis. Neuroreport 7:61–64.

    CAS  PubMed  Google Scholar 

  • Chua BT, Guo K, Li P, 2000, Direct cleavage by the calcium-activated protease calpain can lead to inactivation of caspases. J Biol Chem 275:5131–5135.

    Article  CAS  PubMed  Google Scholar 

  • Clark RS, Chen J, Watkins SC, Kochanek PM, Chen M, Stetler RA, Loeffert JE, Graham SH, 1997, Apoptosis-suppressor gene bcl-2 expression after traumatic brain injury in rats. J Neurosci 17:9172–9182.

    CAS  PubMed  Google Scholar 

  • Clark RS, Kochanek PM, Chen M, Watkins SC, Marion DW, Chen J, Hamilton RL, Loeffert JE, Graham SH, 1999, Increases in Bcl-2 and cleavage of caspase-1 and caspase-3 in human brain after head injury. Faseb J 13:813–821.

    CAS  PubMed  Google Scholar 

  • Clark RS, Kochanek PM, Watkins SC, Chen M, Dixon CE, Seidberg NA, Melick J, Loeffert JE, Nathaniel PD, Jin KL, Graham SH, 2000, Caspase-3 mediated neuronal death after traumatic brain injury in rats. J Neurochem 74:740–753.

    Article  CAS  PubMed  Google Scholar 

  • Clarke PG, 1990, Developmental cell death: morphological diversity and multiple mechanisms. Anat Embryol (Berl) 181:195–213.

    CAS  Google Scholar 

  • Colton C, Wilt S, Gilbert D, Chernyshev O, Snell J, Dubois-Dalcq M, 1996, Species differences in the generation of reactive oxygen species by microglia. Mol Chem Neuropathol 28:15–20.

    CAS  PubMed  Google Scholar 

  • Conti AC, Raghupathi R, Trojanowski JQ, McIntosh TK, 1998, Experimental brain injury induces regionally distinct apoptosis during the acute and delayed post-traumatic period. J Neurosci 18:5663–5672.

    CAS  PubMed  Google Scholar 

  • Coolican SA, Hathaway DR, 1984, Effect of L-alpha-phosphatidylinositol on a vascular smooth muscle Ca2+-dependent protease. Reduction of the Ca2+ requirement for autolysis. J Biol Chem 259:11627–11630.

    CAS  PubMed  Google Scholar 

  • Cortez SC, McIntosh TK, Noble LJ, 1989, Experimental fluid percussion brain injury: vascular disruption and neuronal and glial alterations. Brain Res 482:271–282.

    Article  CAS  PubMed  Google Scholar 

  • Dash C, Kulkarni A, Dunn B, Rao M, 2003, Aspartic peptidase inhibitors: implications in drug development. Crit Rev Biochem Mol Biol 38:89–119.

    CAS  PubMed  Google Scholar 

  • De Duve C, Wattiaux R, 1966, Functions of lysosomes. Annu Rev Physiol 28:435–492.

    PubMed  Google Scholar 

  • Denault JB, Salvesen GS, 2002, Caspases: keys in the ignition of cell death. Chem Rev 102: 4489–4500.

    Article  CAS  PubMed  Google Scholar 

  • Dixon CE, Clifton GL, Lighthall JW, Yaghmai AA, Hayes RL, 1991, A controlled cortical impact model of traumatic brain injury in the rat. J Neurosci Methods 39:253–262.

    CAS  PubMed  Google Scholar 

  • Eldadah BA, Yakovlev AG, Faden AI, 1997, The role of CED-3-related cysteine proteases in apoptosis of cerebellar granule cells. J Neurosci 17:6105–6113.

    CAS  PubMed  Google Scholar 

  • Eldadah BA, Faden AI, 2000, Caspase pathways, neuronal apoptosis, and CNS injury. J Neurotrauma 17:811–829.

    CAS  PubMed  Google Scholar 

  • Ellis RC, Earnhardt JN, Hayes RL, Wang KK, Anderson DK, 2004, Cathepsin B mRNA and protein expression following contusion spinal cord injury in rats. J Neurochem 88:689–697.

    Article  CAS  PubMed  Google Scholar 

  • Ertel W, Keel M, Stocker R, Imhof HG, Leist M, Steckholzer U, Tanaka M, Trentz O, Nagata S, 1997, Detectable concentrations of Fas ligand in cerebrospinal fluid after severe head injury. J Neuroimmunol 80:93–96.

    Article  CAS  PubMed  Google Scholar 

  • Faden AI, 2002, Neuroprotection and traumatic brain injury: theoretical option or realistic proposition. Curr Opin Neurol 15:707–712.

    Article  PubMed  Google Scholar 

  • Fink KB, Andrews LJ, Butler WE, Ona VO, Li M, Bogdanov M, Endres M, Khan SQ, Namura S, Stieg PE, Beal MF, Moskowitz MA, Yuan J, Friedlander RM, 1999, Reduction of post-traumatic brain injury and free radical production by inhibition of the caspase-1 cascade. Neuroscience 94:1213–1218.

    Article  CAS  PubMed  Google Scholar 

  • Fischer U, Janicke RU, Schulze-Osthoff K, 2003, Many cuts to ruin: a comprehensive update of caspase substrates. Cell Death Differ 10:76–100.

    Article  CAS  PubMed  Google Scholar 

  • Foda MA, Marmarou A, 1994, A new model of diffuse brain injury in rats. Part II: Morphological characterization. J Neurosurg 80:301–313.

    CAS  PubMed  Google Scholar 

  • Formigli L, Papucci L, Tani A, Schiavone N, Tempestini A, Orlandini GE, Capaccioli S, Orlandini SZ, 2000, Aponecrosis: morphological and biochemical exploration of a syncretic process of cell death sharing apoptosis and necrosis. J Cell Physiol 182:41–49.

    Article  CAS  PubMed  Google Scholar 

  • Fox GB, Fan L, Levasseur RA, Faden AI, 1998, Sustained sensory/motor and cognitive deficits with neuronal apoptosis following controlled cortical impact brain injury in the mouse. J Neurotrauma 15:599–614.

    CAS  PubMed  Google Scholar 

  • Franz G, Beer R, Intemann D, Krajewski S, Reed JC, Engelhardt K, Pike BR, Hayes RL, Wang KK, Schmutzhard E, Kampfl A, 2002, Temporal and spatial profile of Bid cleavage after experimental traumatic brain injury. J Cereb Blood Flow Metab 22:951–958.

    PubMed  Google Scholar 

  • Fujitani K, Kambayashi J, Sakon M, Ohmi SI, Kawashima S, Yukawa M, Yano Y, Miyoshi H, Ikeda M, Shinoki N, Monden M, 1997, Identification of mu-, m-calpains and calpastatin and capture of mu-calpain activation in endothelial cells. J Cell Biochem 66: 197–209.

    CAS  PubMed  Google Scholar 

  • Can L, Ye S, Chu A, Anton K, Yi S, Vincent VA, von Schack D, Chin D, Murray J, Lohr S, Patthy L, Gonzalez-Zulueta M, Nikolich K, Urfer R, 2004, Identification of cathepsin B as a mediator of neuronal death induced by Abeta-activated microglial cells using a functional genomics approach. J Biol Chem 279:5565–5572.

    Google Scholar 

  • Gardner J, Ghorpade A, 2003, Tissue inhibitor of metalloproteinase (TIMP)-1: the TIMPed balance of matrix metalloproteinases in the central nervous system. J Neurosci Res 74: 801–806.

    Article  CAS  PubMed  Google Scholar 

  • Germano A, Costa C, DeFord SM, Angileri FF, Arcadi F, Pike BR, Bramanti P, Bausano B, Zhao X, Day AL, Anderson DK, Hayes RL, 2002, Systemic administration of a calpain inhibitor reduces behavioral deficits and blood-brain barrier permeability changes after experimental subarachnoid hemorrhage in the rat. J Neurotrauma 19:887–896.

    Article  CAS  PubMed  Google Scholar 

  • Gingrich MB, Traynelis SF, 2000, Serine proteases and brain damage-is there a link? Trends Neurosci 23:399–407.

    Article  CAS  PubMed  Google Scholar 

  • Gomez DE, Alonso DF, Yoshiji H, Thorgeirsson UP, 1997, Tissue inhibitors of metalloproteinases: structure, regulation and biological functions. Eur J Cell Biol 74: 111–122.

    CAS  PubMed  Google Scholar 

  • Grasl-Kraupp B, Ruttkay-Nedecky B, Koudelka H, Bukowska K, Bursch W, Schulte-Hermann R, 1995, In situ detection of fragmented DNA (TUNEL assay) fails to discriminate among apoptosis, necrosis, and autolytic cell death: a cautionary note. Hepatology 21:1465–1468.

    CAS  PubMed  Google Scholar 

  • Grynspan F, Griffin WB, Mohan PS, Shea TB, Nixon RA, 1997, Calpains and calpastatin in SH-SY5Y neuroblastoma cells during retinoic acid-induced differentiation and neurite outgrowth: comparison with the human brain calpain system. J Neurosci Res 48:181–191.

    Article  CAS  PubMed  Google Scholar 

  • Guicciardi ME, Deussing J, Miyoshi H, Bronk SF, Svingen PA, Peters C, Kaufmann SH, Gores GJ, 2000, Cathepsin B contributes to TNF-alpha-mediated hepatocyte apoptosis by promoting mitochondrial release of cytochrome c. J Clin Invest 106:1127–1137.

    CAS  PubMed  Google Scholar 

  • Guroff G, 1964, A Neutral, Calcium-Activated Proteinase from the Soluble Fraction of Rat Brain. J Biol Chem 239:149–155.

    CAS  PubMed  Google Scholar 

  • Hara A, Niwa M, Nakashima M, Iwai T, Uematsu T, Yoshimi N, Mori H, 1998, Protective effect of apoptosis-inhibitory agent, N-tosyl-L-phenylalanyl chloromethyl ketone against ischemia-induced hippocampal neuronal damage. J Cereb Blood Flow Metab 18:819–823.

    CAS  PubMed  Google Scholar 

  • Hatter L, Keel M, Hentze H, Leist M, Ertel W, 2001, Caspase-3 activity is present in cerebrospinal fluid from patients with traumatic brain injury. J Neuroimmunol 121:76–78.

    Google Scholar 

  • Hausmann R, Betz P, 2001, Course of glial immunoreactivity for vimentin, tenascin and alpha1-antichymotrypsin after traumatic injury to human brain. Int J Legal Med 114: 338–342.

    Article  CAS  PubMed  Google Scholar 

  • Hentze H, Schwoebel F, Lund S, Keel M, Ertel W, Wendel A, Jaattela M, Leist M, Kehl M, 2001, In vivo and in vitro evidence for extracellular caspase activity released from apoptotic cells. Biochem Biophys Res Commun 283:1111–1117.

    Article  CAS  PubMed  Google Scholar 

  • Hetman M, Filipkowski RK, Domagala W, Kaczmarek L, 1995, Elevated cathepsin D expression in kainate-evoked rat brain neurodegeneration. Exp Neurol 136:53–63.

    Article  CAS  PubMed  Google Scholar 

  • Hetman M, Danysz W, Kaczmarek L, 1997, Increased expression of cathepsin D in retrosplenial cortex of MK-801-treated rats. Exp Neurol 147:229–237.

    Article  CAS  PubMed  Google Scholar 

  • Hu J, Fink D, Mata M, 2002, Microarray analysis suggests the involvement of proteasomes, lysosomes, and matrix metalloproteinases in the response of motor neurons to root avulsion. Eur J Neurosci 16:1409–1416.

    Article  PubMed  Google Scholar 

  • Huang Y, Wang KK, 2001, The calpain family and human disease. Trends Mol Med 7:355–362.

    Article  CAS  PubMed  Google Scholar 

  • Kampfl A, Posmantur R, Nixon R, Grynspan F, Zhao X, Liu SJ, Newcomb JK, Clifton GL, Hayes RL, 1996, mu-calpain activation and calpain-mediated cytoskeletal proteolysis following traumatic brain injury. J Neurochem 67:1575–1583.

    CAS  PubMed  Google Scholar 

  • Kampfl A, Posmantur RM, Zhao X, Schmutzhard E, Clifton GL, Hayes RL, 1997, Mechanisms of calpain proteolysis following traumatic brain injury: implications for pathology and therapy: implications for pathology and therapy: a review and update. J Neurotrauma 14:121–134.

    CAS  PubMed  Google Scholar 

  • Keane RW, Kraydieh S, Lotocki G, Alonso OF, Aldana P, Dietrich WD, 2001, Apoptotic and antiapoptotic mechanisms after traumatic brain injury. J Cereb Blood Flow Metab 21:1189–1198.

    CAS  PubMed  Google Scholar 

  • Kingham PJ, Cuzner ML, Pocock JM, 1999, Apoptotic pathways mobilized in microglia and neurones as a consequence of chromogranin A-induced microglial activation. J Neurochem 73:538–547.

    Article  CAS  PubMed  Google Scholar 

  • Kitanaka C, Kuchino Y, 1999, Caspase-independent programmed cell death with necrotic morphology. Cell Death Differ 6:508–515.

    Article  CAS  PubMed  Google Scholar 

  • Knoblach SM, Fan L, Faden AI, 1999, Early neuronal expression of tumor necrosis factor-alpha after experimental brain injury contributes to neurological impairment. J Neuroimmunol 95:115–125.

    Article  CAS  PubMed  Google Scholar 

  • Knoblach SM, Nikolaeva M, Huang X, Fan L, Krajewski S, Reed JC, Faden AI, 2002, Multiple caspases are activated after traumatic brain injury: evidence for involvement in functional outcome. J Neurotrauma 19:1155–1170.

    PubMed  Google Scholar 

  • Knoblach SM, Alroy DA, Nikolaeva M, Cernak I, Stocia BA, Faden AI, 2004, Caspase inhibitor z-DEVD-fmk attenuates calpain and necrotic cell death in vitro and after traumatic brain injury. J Cereb Blood Flow Metab, in press.

    Google Scholar 

  • Kochanek PM, Marion DW, Zhang W, Schiding JK, White M, Palmer AM, Clark RS, O’Malley ME, Styren SD, Ho C, et al., 1995, Severe controlled cortical impact in rats: assessment of cerebral edema, blood flow, and contusion volume. J Neurotrauma 12: 1015–1025.

    CAS  PubMed  Google Scholar 

  • Kos J, Lah TT, 1998, Cysteine proteinases and their endogenous inhibitors: target proteins for prognosis, diagnosis and therapy in cancer (review). Oncol Rep 5:1349–1361.

    CAS  PubMed  Google Scholar 

  • Kuhn PL, Wrathall JR, 1998, A mouse model of graded contusive spinal cord injury. J Neurotrauma 15:125–140.

    CAS  PubMed  Google Scholar 

  • Kuida K, Zheng TS, Na S, Kuan C, Yang D, Karasuyama H, Rakic P, Flavell RA, 1996, Decreased apoptosis in the brain and premature lethality in CPP32-deficient mice. Nature 384:368–372.

    Article  CAS  PubMed  Google Scholar 

  • Kuida K, Haydar TF, Kuan CY, Gu Y, Taya C, Karasuyama H, Su MS, Rakic P, Flavell RA, 1998, Reduced apoptosis and cytochrome c-mediated caspase activation in mice lacking caspase 9. Cell 94:325–337.

    Article  CAS  PubMed  Google Scholar 

  • Kupina NC, Detloff MR, Bobrowski WF, Snyder BJ, Hall ED, 2003, Cytoskeletal protein degradation and neurodegeneration evolves differently in males and females following experimental head injury. Exp Neurol 180:55–73.

    Article  CAS  PubMed  Google Scholar 

  • Kupina NC, Nath R, Bernath EE, Inoue J, Mitsuyoshi A, Yuen PW, Wang KK, Hall ED, 2001, The novel calpain inhibitor SJA6017 improves functional outcome after delayed administration in a mouse model of diffuse brain injury. J Neurotrauma 18:1229–1240.

    Article  CAS  PubMed  Google Scholar 

  • Kyrkanides S, O’Banion MK, Whiteley PE, Daeschner JC, Olschowka JA, 2001, Enhanced glial activation and expression of specific CNS inflammation-related molecules in aged versus young rats following cortical stab injury. J Neuroimmunol 119:269–277.

    Article  CAS  PubMed  Google Scholar 

  • Larner SF, Hayes RL, McKinsey DM, Pike BR, Wang KK, 2004, Increased expression and processing of caspase-12 after traumatic brain injury in rats. J Neurochem 88:78–90.

    CAS  PubMed  Google Scholar 

  • Laurer HL, McIntosh TK, 2001, Pharmacologic therapy in traumatic brain injury: update on experimental treatment strategies. Curr Pharm Des 7:1505–1516.

    Article  CAS  PubMed  Google Scholar 

  • Lee KS, Foley PL, Vanderklish P, Lynch G, Goto Y, Kassell NF, 1993, The role of calcium-activated proteolysis in vasospasm after subarachnoid hemorrhage, in Plasticity and Pathology in the Damaged Brain: Cerebral Vasospasm, pp 85–88. Elsevier Science Publishers, San Diego

    Google Scholar 

  • Lee SR, Tsuji K, Lo EH, 2004, Role of matrix metalloproteinases in delayed neuronal damage after transient global cerebral ischemia. J Neurosci 24:671–678.

    CAS  PubMed  Google Scholar 

  • Lee YB, Du S, Rhim H, Lee EB, Markelonis GJ, Oh TH, 2000, Rapid increase in immunoreactivity to GFAP in astrocytes in vitro induced by acidic pH is mediated by calcium influx and calpain I. Brain Res 864:220–229.

    CAS  PubMed  Google Scholar 

  • Lewen A, Matz P, Chan PH, 2000, Free radical pathways in CNS injury. J Neurotrauma 17: 871–890.

    CAS  PubMed  Google Scholar 

  • Lo EH, Wang X, Cuzner ML, 2002, Extracellular proteolysis in brain injury and inflammation: role for plasminogen activators and matrix metalloproteinases. J Neurosci Res 69:1–9.

    Article  CAS  PubMed  Google Scholar 

  • Lukes A, Mun-Bryce S, Lukes M, Rosenberg GA, 1999, Extracellular matrix degradation by metalloproteinases and central nervous system diseases. Mol Neurobiol 19:267–284.

    CAS  PubMed  Google Scholar 

  • Luo X, Budihardjo I, Zou H, Slaughter C, Wang X, 1998, Bid, a Bcl2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors. Cell 94:481–490.

    Article  CAS  PubMed  Google Scholar 

  • Maxwell WL, Povlishock JT, Graham DL, 1997, A mechanistic analysis of nondisruptive axonal injury: a review. J Neurotrauma 14:419–440.

    CAS  PubMed  Google Scholar 

  • McCracken E, Hunter AJ, Patel S, Graham DI, Dewar D, 1999, Calpain activation and cytoskeletal protein breakdown in the corpus callosum of head-injured patients. J Neurotrauma 16:749–761.

    CAS  PubMed  Google Scholar 

  • McGinnis KM, Gnegy ME, Park YH, Mukerjee N, Wang KK, 1999a, Procaspase-3 and poly(ADP)ribose polymerase (PARP) are calpain substrates. Biochem Biophys Res Commun 263:94–99.

    Article  CAS  PubMed  Google Scholar 

  • McGinnis KM, Wang KK, Gnegy ME, 1999b, Alterations of extracellular calcium elicit selective modes of cell death and protease activation in SH-SY5Y human neuroblastoma cells. J Neurochem 72:1853–1863.

    CAS  PubMed  Google Scholar 

  • McIntosh TK, Noble L, Andrews B, Faden AI, 1987, Traumatic brain injury in the rat: characterization of a midline fluid-percussion model. Cent Nerv Syst Trauma 4:119–134.

    CAS  PubMed  Google Scholar 

  • McIntosh TK, 1994, Neurochemical sequelae of traumatic brain injury: therapeutic implications. Cerebrovasc Brain Metab Rev 6:109–162.

    CAS  PubMed  Google Scholar 

  • Mellgren RL, 1987, Calcium-dependent proteases: an enzyme system active at cellular membranes? Faseb J 1:110–115.

    CAS  PubMed  Google Scholar 

  • Melloni E, Michetti M, Salamino F, Minafra R, Pontremoli S, 1996, Modulation of the calpain autoproteolysis by calpastatin and phospholipids. Biochem Biophys Res Commun 229:193–197.

    Article  CAS  PubMed  Google Scholar 

  • Melloni E, Michetti M, Salamino F, Pontremoli S, 1998, Molecular and functional properties of a calpain activator protein specific for mu-isoforms. J Biol Chem 273: 12827–12831.

    Article  CAS  PubMed  Google Scholar 

  • Minami N, Tani E, Maeda Y, Yamaura I, Fukami M, 1992, Effects of inhibitors of protein kinase C and calpain in experimental delayed cerebral vasospasm. J Neurosurg 76:111–118.

    CAS  PubMed  Google Scholar 

  • Morganti-Kossmann MC, Rancan M, Otto VI, Stahel PF, Kossmann T, 2001, Role of cerebral inflammation after traumatic brain injury: a revisited concept. Shock 16:165–177.

    CAS  PubMed  Google Scholar 

  • Mori T, Wang X, Aoki T, Lo EH, 2002, Downregulation of matrix metalloproteinase-9 and attenuation of edema via inhibition of ERK mitogen activated protein kinase in traumatic brain injury. J Neurotrauma 19:1411–1419.

    PubMed  Google Scholar 

  • Morishima N, Nakanishi K, Takenouchi H, Shibata T, Yasuhiko Y, 2002, An endoplasmic reticulum stress-specific caspase cascade in apoptosis. Cytochrome c-independent activation of caspase-9 by caspase-12. J Biol Chem 277:34287–34294.

    Article  CAS  PubMed  Google Scholar 

  • Mort JS, Buttle DJ, 1997, Cathepsin B. Int J Biochem Cell Biol 29:715–720.

    Article  CAS  PubMed  Google Scholar 

  • Movsesyan VA, Yakovlev AG, Fan L, Faden AI, 2001, Effect of serine protease inhibitors on posttraumatic brain injury and neuronal apoptosis. Exp Neurol 167:366–375.

    Article  CAS  PubMed  Google Scholar 

  • Nakanishi H, Yamamoto K, 1998, Involvement of proteinases produced by both neurons and microglia in neuronal lesion and death pathways. Nippon Yakurigaku Zasshi 112:77–88.

    CAS  PubMed  Google Scholar 

  • Nakanishi H, 2003a, Microglial functions and proteases. Mol Neurobiol 27:163–176.

    CAS  PubMed  Google Scholar 

  • Nakanishi H, 2003b, Neuronal and microglial cathepsins in aging and age-related diseases. Ageing Res Rev 2:367–381.

    CAS  PubMed  Google Scholar 

  • Natale JE, Ahmed F, Cernak I, Stoica B, Faden AI, 2003, Gene expression profile changes are commonly modulated across models and species after traumatic brain injury. J Neurotrauma 20:907–927.

    Article  PubMed  Google Scholar 

  • Nath R, Raser KJ, McGinnis K, Nadimpalli R, Stafford D, Wang KK, 1996a, Effects of ICE-like protease and calpain inhibitors on neuronal apoptosis. Neuroreport 8:249–255.

    CAS  PubMed  Google Scholar 

  • Nath R, Raser KJ, Stafford D, Hajimohammadreza I, Posner A, Allen H, Talanian RV, Yuen P, Gilbertsen RB, Wang KK, 1996b, Non-erythroid alpha-spectrin breakdown by calpain and interleukin 1 beta-converting-enzyme-like protease(s) in apoptotic cells: contributory roles of both protease families in neuronal apoptosis. Biochem J 319:683–690.

    CAS  PubMed  Google Scholar 

  • Nelson WJ, Traub P, 1982, Purification and further characterization of the Ca2+-activated proteinase specific for the intermediate filament proteins vimentin and desmin. J Biol Chem 257:5544–5553.

    CAS  PubMed  Google Scholar 

  • Newcomb JK, Kampfl A, Posmantur RM, Zhao X, Pike BR, Liu SJ, Clifton GL, Hayes RL, 1997, Immunohistochemical study of calpain-mediated breakdown products to alpha-spectrin following controlled cortical impact injury in the rat. J Neurotrauma 14:369–383.

    CAS  PubMed  Google Scholar 

  • Newcomb JK, Zhao X, Pike BR, Hayes RL, 1999, Temporal profile of apoptotic-like changes in neurons and astrocytes following controlled cortical impact injury in the rat. Exp Neurol 158:76–88.

    Article  CAS  PubMed  Google Scholar 

  • Nicholson DW, 2000, From bench to clinic with apoptosis-based therapeutic agents. Nature 407:810–816.

    Article  CAS  PubMed  Google Scholar 

  • Nixon RA, 2000, A “protease activation cascade” in the pathogenesis of Alzheimer’s disease. Ann N Y Acad Sci 924:117–131.

    CAS  PubMed  Google Scholar 

  • Nixon RA, Mathews PM, Cataldo AM, 2001, The neuronal endosomal-lysosomal system in Alzheimer’s disease. J Alzheimers Dis 3:97–107.

    CAS  PubMed  Google Scholar 

  • Okonkwo DO, Buki A, Siman R, Povlishock JT, 1999, Cyclosporin A limits calcium-induced axonal damage following traumatic brain injury. Neuroreport 10:353–358.

    CAS  PubMed  Google Scholar 

  • Ollinger K, Brunk UT, 1995, Cellular injury induced by oxidative stress is mediated through lysosomal damage. Free Radic Biol Med 19:565–574.

    Article  CAS  PubMed  Google Scholar 

  • Pang Z, Bondada V, Sengoku T, Siman R, Geddes JW, 2003, Calpain facilitates the neuron death induced by 3-nitropropionic acid and contributes to the necrotic morphology. J Neuropathol Exp Neurol 62:633–643.

    CAS  PubMed  Google Scholar 

  • Panter SS, Faden AJ, 1992, Biochemical changes and secondary injury from stroke and trauma, Chapter 4, in Principles and Practice of Restorative Neurology, pp 32–52. Butterworth’s, New York

    Google Scholar 

  • Pike BR, Zhao X, Newcomb JK, Posmantur RM, Wang KK, Hayes RL, 1998, Regional calpain and caspase-3 proteolysis of alpha-spectrin after traumatic brain injury. Neuroreport 9:2437–2442.

    CAS  PubMed  Google Scholar 

  • Pike B, Zhao X, Newcomb J, Glenn C, Anderson D, Hayes R, 2000, Stretch injury causes calpain and caspase-3 activation and necrotic and apoptotic cell death in septo-hippocampal cell cultures. J Neurotrauma 17:p283–298.

    CAS  PubMed  Google Scholar 

  • Pike BR, Flint J, Dutta S, Johnson E, Wang KK, Hayes RL, 2001, Accumulation of non-erythroid alpha II-spectrin and calpain-cleaved alpha II-spectrin breakdown products in cerebrospinal fluid after traumatic brain injury in rats. J Neurochem 78:1297–1306.

    Article  CAS  PubMed  Google Scholar 

  • Pohl D, Bittigau P, Ishimaru MJ, Stadthaus D, Hubner C, Olney JW, Turski L, IKonomidou C, 1999, N-Methyl-D-aspartate antagonists and apoptotic cell death triggered by head trauma in developing rat brain. Proc Natl Acad Sci U S A 96:2508–2513.

    Article  CAS  PubMed  Google Scholar 

  • Pontremoli S, Salamino F, Sparatore B, Michetti M, Sacco O, Melloni E, 1985, Following association to the membrane, human erythrocyte procalpain is converted and released as fully active calpain. Biochim Biophys Acta 831:335–339.

    CAS  PubMed  Google Scholar 

  • Porn-Ares MI, Samali A, Orrenius S, 1998, Cleavage of the calpain inhibitor, calpastatin, during apoptosis. Cell Death Differ 5:1028–1033.

    CAS  PubMed  Google Scholar 

  • Posmantur RM, Kampfl A, Liu SJ, Heck K, Taft WC, Clifton GL, Hayes RL, 1996, Cytoskeletal derangements of cortical neuronal processes three hours after traumatic brain injury in rats: an immunofluorescence study. J Neuropathol Exp Neurol 55:68–80.

    CAS  PubMed  Google Scholar 

  • Posmantur R, Kampfl A, Siman R, Liu J, Zhao X, Clifton GL, Hayes RL, 1997, A calpain inhibitor attenuates cortical cytoskeletal protein loss after experimental traumatic brain injury in the rat. Neuroscience 77:875–888.

    Article  CAS  PubMed  Google Scholar 

  • Posmantur RM, Zhao X, Kampfl A, Clifton GL, Hayes RL, 1998, Immunoblot analyses of the relative contributions of cysteine and aspartic proteases to neurofilament breakdown products following experimental brain injury in rats. Neurochem Res 23:1265–1276.

    Article  CAS  PubMed  Google Scholar 

  • Posmantur RM, Newcomb JK, Kampfl A, Hayes RL, 2000, Light and confocal microscopic studies of evolutionary changes in neurofilament proteins following cortical impact injury in the rat. Exp Neural 161:15–26.

    CAS  Google Scholar 

  • Povlishock JT, Buki A, Koiziumi H, Stone J, Okonkwo DO, 1999, Initiating mechanisms involved in the pathobiology of traumatically induced axonal injury and interventions targeted at blunting their progression. Acta Neurochir Suppl (Wien) 73:15–20.

    CAS  Google Scholar 

  • Prins ML, Hovda DA, 2003, Developing experimental models to address traumatic brain injury in children. J Neurotrauma 20:123–137.

    Article  PubMed  Google Scholar 

  • Qiu J, Whalen MJ, Lowenstein P, Fiskum G, Fahy B, Darwish R, Aarabi B, Yuan J, Moskowitz MA, 2002, Upregulation of the Fas receptor death-inducing signaling complex after traumatic brain injury in mice and humans. J Neurosci 22:3504–3511.

    CAS  PubMed  Google Scholar 

  • Raghupathi R, Graham DI, McIntosh TK, 2000, Apoptosis after traumatic brain injury. J Neurotrauma 17:927–938.

    CAS  PubMed  Google Scholar 

  • Raghupathi R, Strauss KI, Zhang C, Krajewski S, Reed JC, McIntosh TK, 2003, Temporal alterations in cellular Bax:Bcl-2 ratio following traumatic brain injury in the rat. J Neurotrauma 20:421–435.

    Article  PubMed  Google Scholar 

  • Ray SK, Hogan EL, Banik ML, 2003, Calpain in the pathophysiology of spinal cord injury: neuroprotection with calpain inhibitors. Brain Res Brain Res Rev 42:169–185.

    Article  CAS  PubMed  Google Scholar 

  • Reiners JJ, Jr., Caruso JA, Mathieu P, Chelladurai B, Yin XM, Kessel D, 2002, Release of cytochrome c and activation of pro-caspase-9 following lysosomal photodamage involves Bid cleavage. Cell Death Differ 9:934–944.

    CAS  PubMed  Google Scholar 

  • Reinheckel T, Deussing J, Roth W, Peters C, 2001, Towards specific functions of lysosomal cysteine peptidases: phenotypes ofmice deficient for cathepsin B or cathepsin L. Biol Chem 382:735–741.

    Article  CAS  PubMed  Google Scholar 

  • Rink A, Fung KM, Trojanowski JQ, Lee VM, Neugebauer E, McIntosh TK, 1995, Evidence of apoptotic cell death after experimental traumatic brain injury in the rat. Am J Pathol 147:1575–1583.

    CAS  PubMed  Google Scholar 

  • Rosenberg GA, 2002, Matrix metalloproteinases in neuroinflammation. Glia 39:279–291.

    Article  PubMed  Google Scholar 

  • Rozman-Pungercar J, Kopitar-Jerala N, Bogyo M, Turk D, Vasiljeva O, Stefe I, Vandenabeele P, Bromme D, Puizdar V, Fonovic M, Trstenjak-Prebanda M, Dolenc I, Turk V, Turk B, 2003, Inhibition of papain-like cysteine proteases and legumain by caspase-specific inhibitors: when reaction mechanism is more important than specificity. Cell Death Differ 10:881–888.

    CAS  PubMed  Google Scholar 

  • Saatman KE, Bozyczko-Coyne D, Marcy V, Siman R, McIntosh TK, 1996a, Prolonged calpain-mediated spectrin breakdown occurs regionally following experimental brain injury in the rat. J Neuropathol Exp Neural 55:850–860.

    CAS  Google Scholar 

  • Saatman KE, Murai H, Bartus RT, Smith DH, Hayward NJ, Perri BR, McIntosh TK, 1996b, Calpain inhibitor AK295 attenuates motor and cognitive deficits following experimental brain injury in the rat. Proc Natl Acad Sci U S A 93:3428–3433.

    Article  CAS  PubMed  Google Scholar 

  • Saatman KE, Zhang C, Bartus RT, McIntosh TK, 2000, Behavioral efficacy of posttraumatic calpain inhibition is not accompanied by reduced spectrin proteolysis, cortical lesion, or apoptosis. J Cereb Blood Flow Metab 20:66–73.

    CAS  PubMed  Google Scholar 

  • Saatman KE, Bareyre FM, Grady MS, McIntosh TK, 2001, Acute cytoskeletal alterations and cell death induced by experimental brain injury are attenuated by magnesium treatment and exacerbated by magnesium deficiency. J Neuropathol Exp Neural 60:183–194.

    CAS  Google Scholar 

  • Salamino F, De Tullio R, Mengotti P, Viotti PL, Melloni E, Pontremoli S, 1992, Different susceptibility of red cell membrane proteins to calpain degradation. Arch Biochem Biophys 298:287–292.

    Article  CAS  PubMed  Google Scholar 

  • Saleh M, Vaillancourt JP, Graham RK, Huyck M, Srinivasula SM, Alnemri ES, Steinberg MH, Nolan V, Baldwin CT, Hotchkiss RS, Buchman TG, Zehnbauer BA, Hayden MR, Farrer LA, Roy S, Nicholson DW, 2004, Differential modulation of endotoxin responsiveness by human caspase-12 polymorphisms. Nature 429:75–79.

    Article  CAS  PubMed  Google Scholar 

  • Sasaki T, Kishi M, Saito M, Tanaka T, Higuchi N, Kominami E, Katunuma M, Murachi T, 1990, Inhibitory effects of di-and tripeptidyl aldehydes on calpains and cathepsins. J Enzyme Inhibition 2:195–201.

    Google Scholar 

  • Sato M, Tani E, Matsumoto T, Fujikawa H, Imajoh-Ohmi S, 1997, Generation of the catalytic fragment of protein kinase C alpha in spastic canine basilar artery. J Neurosurg 87:752–756.

    CAS  PubMed  Google Scholar 

  • Sato M, Chang E, Igarashi T, Noble LJ, 2001, Neuronal injury and loss after traumatic brain injury: time course and regional variability. Brain Res 917:45–54.

    Article  CAS  PubMed  Google Scholar 

  • Schotte P, Van Criekinge W, Van de Craen M, Van Loo G, Desmedt M, Grooten J, Cornelissen M, De Ridder L, Vandekerckhove J, Fiers W, Vandenabeele P, Beyaert R, 1998, Cathepsin B-mediated activation of the proinflammatory caspase-11. Biochem Biophys Res Commun 251:379–387.

    Article  CAS  PubMed  Google Scholar 

  • Schotte P, Declercq W, Van Huffel S, Vandenabeele P, Beyaert R, 1999, Non-specific effects of methyl ketone peptide inhibitors of caspases. FEBS Lett 442:117–121.

    Article  CAS  PubMed  Google Scholar 

  • Schwab BL, Guerini D, Didszun C, Bano D, Ferrando-May E, Fava E, Tarn J, Xu D, Xanthoudakis S, Nicholson DW, Carafoli E, Nicotera P, 2002, Cleavage of plasma membrane calcium pumps by caspases: a link between apoptosis and necrosis. Cell Death Differ 9:818–831.

    Article  CAS  PubMed  Google Scholar 

  • Sedarous M, Keramaris E, O’Hare M, Melloni E, Slack RS, Elce JS, Greer PA, Park DS, 2003, Calpains mediate p53 activation and neuronal death evoked by DNA damage. J Biol Chem 278:26031–26038.

    Article  CAS  PubMed  Google Scholar 

  • Seyfried D, Han Y, Zheng Z, Day N, Moin K, Rempel S, Sloane B, Chopp M, 1997, Cathepsin B and middle cerebral artery occlusion in the rat. J Neurosurg 87:716–723.

    CAS  PubMed  Google Scholar 

  • Seyfried DM, Veyna R, Han Y, Li K, Tang N, Betts RL, Weinsheimer S, Chopp M, Anagli J, 2001, A selective cysteine protease inhibitor is non-toxic and cerebroprotective in rats undergoing transient middle cerebral artery ischemia. Brain Res 901:94–101.

    Article  CAS  PubMed  Google Scholar 

  • Shibata M, Kanamori S, Isahara K, Ohsawa Y, Konishi A, Kametaka S, Watanabe T, Ebisu S, Ishido K, Kominami E, Uchiyama Y, 1998, Participation of cathepsins B and D in apoptosis of PC12 cells following serum deprivation. Biochem Biophys Res Commun 251:199–203.

    Article  CAS  PubMed  Google Scholar 

  • Shields DC, Banik NL, 1999, Pathophysiological role of calpain in experimental demyelination. J Neurosci Res 55:533–541.

    Article  CAS  PubMed  Google Scholar 

  • Singleton RH, Povlishock JT, 2004, Identification and characterization of heterogeneous neuronal injury and death in regions of diffuse brain injury: evidence for multiple independent injury phenotypes. J Neurosci 24:3543–3553.

    Article  CAS  PubMed  Google Scholar 

  • Slee EA, Harte MT, Kluck RM, Wolf BB, Casiano CA, Newmeyer DD, Wang HG, Reed JC, Nicholson DW, Alnemri ES, Green DR, Martin SJ, 1999, Ordering the cytochrome c-initiated caspase cascade: hierarchical activation of caspases-2,-3,-6,-7,-8, and-10 in a caspase-9-dependent manner. J Cell Biol 144:281–292.

    Article  CAS  PubMed  Google Scholar 

  • Small GW, Chou TY, Dang CV, Orlowski RZ, 2002, Evidence for involvement of calpain in c-Myc proteolysis in vivo. Arch Biochem Biophys 400:151–161.

    Article  CAS  PubMed  Google Scholar 

  • Sorimachi H, Ishiura S, Suzuki K, 1997, Structure and physiological function of calpains. Biochem J 328 (Pt 3): 721–732.

    PubMed  Google Scholar 

  • Sperandio S, de Belle I, Bredesen DE, 2000, An alternative, nonapoptotic form of programmed cell death. Proc Natl Acad Sci U S A 97:14376–14381.

    Article  CAS  PubMed  Google Scholar 

  • Springer JE, Azbill RD, Kennedy SE, George J, Geddes JW, 1997, Rapid calpain I activation and cytoskeletal protein degradation following traumatic spinal cord injury: attenuation with riluzole pretreatment. J Neurochem 69:1592–1600.

    CAS  PubMed  Google Scholar 

  • Srinivasula SM, Hegde R, Saleh A, Datta P, Shiozaki E, Chai J, Lee RA, Robbins PD, Fernandes-Alnemri T, Shi Y, Alnemri ES, 2001, A conserved XIAP-interaction motif in caspase-9 and Smac/DIABLO regulates caspase activity and apoptosis. Nature 410:112–116.

    Article  CAS  PubMed  Google Scholar 

  • Stennicke HR, Ryan CA, Salvesen GS, 2002, Reprieval from execution: the molecular basis of caspase inhibition. Trends Biochem Sci 27:94–101.

    Article  CAS  PubMed  Google Scholar 

  • Stracher A, 1999, Calpain inhibitors as therapeutic agents in nerve and muscle degeneration. Ann N Y Acad Sci 884:52–59.

    CAS  PubMed  Google Scholar 

  • Sullivan PG, Keller JN, Bussen WL, Scheff SW, 2002, Cytochrome c release and caspase activation after traumatic brain injury. Brain Res 949:88–96.

    Article  CAS  PubMed  Google Scholar 

  • Suzuki K, Tsuji S, Kubota S, Kimura Y, Imahori K, 1981, Limited autolysis of Ca2+-activated neutral protease (CANP) changes its sensitivity to Ca2+ ions. J Biochem (Tokyo) 90:275–278.

    CAS  Google Scholar 

  • Suzuki Y, Imai Y, Nakayama H, Takahashi K, Takio K, Takahashi R, 2001, A serine protease, HtrA2, is released from the mitochondria and interacts with XIAP, inducing cell death. Mol Cell 8:613–621.

    Article  CAS  PubMed  Google Scholar 

  • Syntichaki P, Xu K, Driscoll M, Tavernarakis N, 2002, Specific aspartyl and calpain proteases are required for neurodegeneration in C. elegans. Nature 419:939–944.

    Article  CAS  PubMed  Google Scholar 

  • Taft WC, Yang K, Dixon CE, Hayes RL, 1992, Microtubule-associated protein 2 levels decrease in hippocampus following traumatic brain injury. J Neurotrauma 9:281–290.

    CAS  PubMed  Google Scholar 

  • Takuma K, Kiriu M, Mori K, Lee E, Enomoto R, Baba A, Matsuda T, 2003, Roles of cathepsins in reperfusion-induced apoptosis in cultured astrocytes. Neurochem Int 42: 153–159.

    Article  CAS  PubMed  Google Scholar 

  • Tan HK, Heywood D, Ralph GS, Bienemann A, Baker AH, Uney JB, 2003, Tissue inhibitor of metalloproteinase 1 inhibits excitotoxic cell death in neurons. Mol Cell Neurosci 22: 98–106.

    Article  CAS  PubMed  Google Scholar 

  • Tang Y, Lu A, Aronow BJ, Wagner KR, Sharp FR, 2002, Genomic responses of the brain to ischemic stroke, intracerebral haemorrhage, kainate seizures, hypoglycemia, and hypoxia. Eur J Neurosci 15:1937–1952.

    Article  PubMed  Google Scholar 

  • Tavernarakis N, Driscoll M, 2001, Degenerins. At the core of the metazoan mechanotransducer? Ann N Y Acad Sci 940:28–41.

    CAS  PubMed  Google Scholar 

  • Tominaga K, Nakanishi H, Yasuda Y, Yamamoto K, 1998, Excitotoxin-induced neuronal death is associated with response of a unique intracellular aspartic proteinase, cathepsin E. J Neurochem 71:2574–2584.

    CAS  PubMed  Google Scholar 

  • Tsuchiya K, Kohda Y, Yoshida M, Zhao L, Ueno T, Yamashita J, Yoshioka T, Kominami E, Yamashima T, 1999, Postictal blockade of ischemic hippocampal neuronal death in primates using selective cathepsin inhibitors. Exp Neurol 155:187–194.

    Article  CAS  PubMed  Google Scholar 

  • Turk B, Turk D, Turk V, 2000, Lysosomal cysteine proteases: more than scavengers. Biochim Biophys Acta 1477:98–111.

    CAS  PubMed  Google Scholar 

  • Turk D, Guncar G, 2003, Lysosomal cysteine proteases (cathepsins): promising drug targets. Acta Crystallogr D Biol Crystallogr 59:203–213.

    Article  PubMed  Google Scholar 

  • van Loo G, Saelens X, Matthijssens F, Schotte P, Beyaert R, Declercq W, Vandenabeele P, 2002, Caspases are not localized in mitochondria during life or death. Cell Death Differ 9:1207–1211.

    PubMed  Google Scholar 

  • Vancompernolle K, Van Herreweghe F, Pynaert G, Van de Craen M, De Vos K, Totty N, Sterling A, Fiers W, Vandenabeele P, Grooten J, 1998, Atractyloside-induced release of cathepsin B, a protease with caspase-processing activity. FEBS Lett 438:150–158.

    Article  CAS  PubMed  Google Scholar 

  • Vanderklish PW, Bahr BA, 2000, The pathogenic activation of calpain: a marker and mediator of cellular toxicity and disease states. Int J Exp Pathol 81:323–339.

    Article  CAS  PubMed  Google Scholar 

  • Vecil GG, Larsen PH, Corley SM, Herx LM, Besson A, Goodyer CG, Yong VW, 2000, lnterleukin-1 is a key regulator of matrix metalloproteinase-9 expression in human neurons in culture and following mouse brain trauma in vivo. J Neurosci Res 61:212–224.

    Article  CAS  PubMed  Google Scholar 

  • von Gertten C, Holmin S, Mathiesen T, Nordqvist AC, 2003, Increases in matrix metalloproteinase-9 and tissue inhibitor of matrix metalloproteinase-1 mRNA after cerebral contusion and depolarisation. J Neurosci Res 73:803–810.

    Google Scholar 

  • Wang KK, Yuen PW, 1994, Calpain inhibition: an overview of its therapeutic potential. Trends Pharmacol Sci 15:412–419.

    Article  CAS  PubMed  Google Scholar 

  • Wang KK, Nath R, Raser KJ, Hajimohammadreza I, 1996, Maitotoxin induces calpaih activation in SH-SY5Y neuroblastoma cells and cerebrocortical cultures. Arch Biochem Biophys 331:208–214.

    Article  CAS  PubMed  Google Scholar 

  • Wang KK, Posmantur R, Nath R, McGinnis K, Whitton M, Talanian RV, Glantz SB, Morrow JS, 1998, Simultaneous degradation of alphaII-and betaII-spectrin by caspase 3 (CPP32) in apoptotic cells. J Biol Chem 273:22490–22497.

    CAS  PubMed  Google Scholar 

  • Wang KK, 2000, Calpain and caspase: can you tell the difference? Trends Neurosci 23:20–26.

    PubMed  Google Scholar 

  • Wang X, Jung J, Asahi M, Chwang W, Russo L, Moskowitz MA, Dixon CE, Fini ME, Lo EH, 2000, Effects of matrix metalloproteinase-9 gene knock-out on morphological and motor outcomes after traumatic brain injury. J Neurosci 20:7037–7042.

    CAS  PubMed  Google Scholar 

  • Wang X, Mori T, Jung JC, Fini ME, Lo EH, 2002, Secretion of matrix metalloproteinase-2 and-9 after mechanical trauma injury in rat cortical cultures and involvement of MAP kinase. J Neurotrauma 19:615–625.

    PubMed  Google Scholar 

  • Waterhouse NJ, Finucane DM, Green DR, Elce JS, Kumar S, Alnemri ES, Litwack G, Khanna K, Lavin MF, Watters DJ, 1998, Calpain activation is upstream of caspases in radiation-induced apoptosis. Cell Death Differ 5:1051–1061.

    Article  CAS  PubMed  Google Scholar 

  • Werneburg NW, Guicciardi ME, Bronk SF, Gores GJ, 2002, Tumor necrosis factor-alpha-associated lysosomal permeabilization is cathepsin B dependent. Am J Physiol Gastrointest Liver Physiol 283:G947–956.

    Google Scholar 

  • Whalen MJ, Carlos TM, Dixon CE, Robichaud P, Clark RS, Marion DW, Kochanek PM, 2000, Reduced brain edema after traumatic brain injury in mice deficient in P-selectin and intercellular adhesion molecule-1. J Leukoc Biol 67:160–168.

    CAS  PubMed  Google Scholar 

  • Wolf BB, Goldstein JC, Stennicke HR, Beere H, Amarante-Mendes GP, Salvesen GS, Green DR, 1999, Calpain functions in a caspase-independent manner to promote apoptosis-like events during platelet activation. Blood 94:1683–1692.

    CAS  PubMed  Google Scholar 

  • Xi G, Reiser G, Keep RF, 2003, The role of thrombin and thrombin receptors in ischemic, hernorrhagic and traumatic brain injury: deleterious or protective? J Neurochem 84:3–9.

    Article  CAS  PubMed  Google Scholar 

  • Yakovlev AG, Faden AI, 1995, Molecular biology of CNS injury. J Neurotrauma 12:767–777.

    CAS  PubMed  Google Scholar 

  • Yakovlev AG, Knoblach SM, Fan L, Fox GB, Goodnight R, Faden AI, 1997, Activation of CPP32-like caspases contributes to neuronal apoptosis and neurological dysfunction after traumatic brain injury. J Neurosci 17:7415–7424.

    CAS  PubMed  Google Scholar 

  • Yakovlev AG, Ota K, Wang G, Movsesyan V, Bao WL, Yoshihara K, Faden AI, 2001, Differential expression of apoptotic protease-activating factor-1 and caspase-3 genes and susceptibility to apoptosis during brain development and after traumatic brain injury. J Neurosci 21:7439–7446.

    CAS  PubMed  Google Scholar 

  • Yamashima T, 2000, Implication of cysteine proteases calpain, cathepsin and caspase in ischemic neuronal death of primates. Prog Neurobiol 62:273–295.

    Article  CAS  PubMed  Google Scholar 

  • Yamashima T, Kohda Y, Tsuchiya K, Ueno T, Yamashita J, Yoshioka T, Kominami E, 1998, Inhibition of ischaemic hippocampal neuronal death in primates with cathepsin B inhibitor CA-074: a novel strategy for neuroprotection based on “calpain-cathepsin hypothesis”. Eur J Neurosci 10:1723–1733.

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Chen J, Graham SH, Du L, Kochanek PM, Draviam R, Guo F, Nathaniel PD, Szabo C, Watkins SC, Clark RS, 2002, Intranuclear localization of apoptosis-inducing factor (AIF) and large scale DNA fragmentation after traumatic brain injury in rats and in neuronal cultures exposed to peroxynitrite. J Neurochem 82:181–191.

    CAS  PubMed  Google Scholar 

  • Zhang X, Graham SH, Kochanek PM, Marion DW, Nathaniel PD, Watkins SC, Clark RS, 2003, Caspase-8 expression and proteolysis in human brain after severe head injury. Faseb J 17:1367–1369.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science + Business Media, Inc. Dordrecht

About this chapter

Cite this chapter

Knoblach, S.M., Faden, A.I. (2005). Proteases in Traumatic Brain Injury. In: Lendeckel, U., Hooper, N.M. (eds) Proteases In The Brain. Proteases In Biology and Disease, vol 3. Springer, Boston, MA. https://doi.org/10.1007/0-387-23101-3_4

Download citation

Publish with us

Policies and ethics