Skip to main content

Channel Coding for Optical Communications

Invited Paper

  • Chapter
Optical Communication Theory and Techniques

Abstract:

Channel coding is a fundamental tool to improve performance in most of the digital transmission systems. By yielding the same performance with a significant saving in the transmitted power (the coding gain), channel coding helps increasing capacity in cellular systems, repeater spacing in terrestrial links, reducing the antenna size in deep-space communications, etc. It is now widely used also in optical communication, which, however, poses severe and peculiar challenges to the code design and implementation. The aim of this tutorial paper is to frame channel coding in optical systems by describing currently used coding schemes and strong future candidates promising higher coding gains. A rich annotated bibliography concludes the paper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

Fundamental and tutorial papers

  1. S. Benedetto and E. Biglieri, Principles of digital transmission with wireless applications, New York: Kluwer Academic Publishers, 1999.

    Google Scholar 

  2. C. Berrou and A. Glavieux, “Near optimum error correcting coding and decoding: Turbo-codes,” IEEE Trans. Commun., vol. 44, pp. 1261–1271, Oct. 1996.

    Article  Google Scholar 

  3. R. Gallager, “Low-density parity-check codes,” IEEE Trans. Inform. Theory, vol. 8, no. 1, pp. 21–28, Jan. 1962.

    Article  MATH  MathSciNet  Google Scholar 

  4. G. D. Forney, Jr., Concatenated Codes, MIT Press, Cambridge, Mass., 1966.

    Google Scholar 

  5. S. Benedetto et al., “Serial concatenation of interleaved codes: performance analysis, design, and iterative decoding,” IEEE Trans. Inform. Theory, vol. 44, no. 3, pp. 909–926, May 1998.

    Article  MATH  MathSciNet  Google Scholar 

  6. S. Benedetto, D. Divsalar, G. Montorsi, and F. Pollara, “Soft-input soft-output modules for the construction and distributed iterative decoding of code networks,” European Transactions on Telecommunications, invited paper, March-April 1998.

    Google Scholar 

  7. D. Chase, “A class of algorithms for decoding block codes with channel measurement information,” IEEE Trans. Inform. Theory, vol. 18, no. 1, pp. 170–181, Jan. 1972.

    Article  MATH  MathSciNet  Google Scholar 

  8. T. J. Richardson and R. L. Urbanke, “The capacity of low-density parity-check codes under message-passing decoding,” IEEE Trans. Inform. Theory, vol. 47, no. 2, pp. 559–618, Feb. 2001.

    Google Scholar 

  9. O. Ait-Sab, “Tutorial: Forward error correction techniques,” in Proc. OFC 2003, Mar. 2003.

    Google Scholar 

  10. F. Kerfoot, “Tutorial: forward error correction for optical transmission systems,” in Proc. OFC 2003, Mar. 2003.

    Google Scholar 

  11. R. Garello, F. Chiaraluce, P. Pierleoni, M. Scaloni, and S. Benedetto, “On error floor and free distance of turbo codes,” in Proc. of ICC 2001, vol. 1, pp. 45–49.

    Google Scholar 

  12. R. Koetter and P. Vontobel, “Graph-covers and iterative decoding of finite length codes,” in Proc. 3rd Intl. Symp. on Turbo Codes, Brest, France (Sept. 2003) Turbo conference, Brest 2003.

    Google Scholar 

  13. A. Vardy, “The intractability of computing the minimum distance of a code,” IEEE Trans. Inform. Theory, vol. 43, no. 26, pp. 1757–1766, Nov. 1997.

    MATH  MathSciNet  Google Scholar 

  14. A. Perotti, G. Montorsi, and S. Benedetto, “Performance analysis and optimization of concatenated block-turbo coding schemes,” in Proc. ICC 2004, June 2004.

    Google Scholar 

Reed-Solomon codes

  1. L. Song, M. Yu, and M. S. Shaffer, “10-and 40-Gb/s Forward Error Correction Devices for Optical Communications,” IEEE J. Solid-State Circuits, vol. 37, no. 11, pp. 1565–1573, Nov. 2002.

    Google Scholar 

  2. G. Bosco, G. Montorsi, and S. Benedetto, “A new algorithm for “hard” iterative decoding of concatenated codes,” IEEE Trans. Commun., vol. 51, no. 8, pp. 1229–1232, Aug. 2003.

    Google Scholar 

  3. ITU-T Recommendation G.975: “Forward error correction for submarine systems,” 1996.

    Google Scholar 

  4. R. Koetter and A. Vardy, “Algebraic soft-decision decoding of Reed-Solomon codes,” IEEE Trans. Inform. Theory, vol. 49, no. 11, pp. 2809–2825, Nov. 2003.

    Article  MathSciNet  Google Scholar 

  5. H. Taga, H. Yamauchi, T. Inoue, and K. Goto, “Performance improvement of highly nonlinear long-distance optical fiber transmission system using novel high gain forward error correction code,” in Proc. OFC 2001, paper TuF3, Mar. 2001.

    Google Scholar 

  6. A. Agata, K. Tanaka, and N. Edagawa, “Study on the Optimum Reed-Solomon-Based FEC Codes for 40-Gb/s-Based Ultralong-Distance WDM Transmission,” J. Lightwave Technol., vol. 20, no. 12, pp. 2189–2195, Dec. 2002.

    Article  Google Scholar 

  7. J. Yan, M. Chen, S. Xie, and B. Zhou, “Performance evaluation of standard FEC in 40 Gbit/s systems with high PMD and prechirped CS-RZ modulation format,” in IEE Proc.-Optoelectron., vol. 151, no. 1, pp. 37–40, Feb. 2004.

    Article  Google Scholar 

Experimental applications of RS codes

  1. C.R. Davidson et al., “1800 Gb/s transmission on one hundred and eighty 10 Gb/s WDM channels over 7,000 km using full EDFA C-band,” in Proc. OFC 2000, pp. PD25.1–PD25.3, Mar. 2000.

    Google Scholar 

  2. J.-X. Cai et al., “2.4 Tb/s (120×20 Gb/s) transmission over transoceanic distance using optimum FEC overhead and 48% spectral efficiency,” in Proc. OFC 2001, paper PD20, Mar. 2001.

    Google Scholar 

  3. G. Vareille et al., “1.5 terabit/s submarine 4000 km system validation over a deployed line with industrial margins using 25 GHz channel spacing and NRZ format over NZDSF,” in Proc. OFC 2002, paper WP5, Mar. 2002.

    Google Scholar 

  4. X. Liu et al., “Enhanced FEC OSNR Gains in Dispersion-Uncompensated 10.7-Gb/s Duobinary Transmission Over 200-km SSMF,” IEEE Photon. Technol. Lett., vol. 15, no. 8, pp. 1162–1164, Aug. 2003.

    Google Scholar 

  5. Y. Katayama and T. Yamane, “An experimental study of transmission distance limitation for the submarine cable system using C-band EDFA repeaters and a demonstration of 96WDM, 10 Gbit/s, over 12,000 km transmission having sufficient engineering margin,” in Proc. OFC 2003, vol. 1, pp. 178–179, Mar. 2003.

    Google Scholar 

  6. C. Rasmussen et al., “DWDM 40G transmission over trans-Pacific distance (10,000 km) using CSRZ-DPSK, enhanced FEC and all-Raman amplified 100 km ultrawave fiber spans,” in Proc. OFC 2003, pp. PD18–1–PD18–3, Mar. 2003.

    Google Scholar 

Block turbo codes

  1. R. Pyndiah, “Near-optimum decoding of product codes: block turbo codes,” IEEE Trans. Inform. Theory, vol. 46, no. 8, pp. 1003–1010, Aug. 1998.

    MATH  Google Scholar 

  2. O. Ait Sab and V. Lemaire, “Block turbo code performance for long-haul DWDM optical transmission systems,” in Proc. OFC 2000, pp. ThS5–1–TuS5–4, Mar. 2000.

    Google Scholar 

  3. O. Ait Sab, “FEC techniques in submarine transmission systems,” in Proc. OFC 2001, pp. TuF1–1–TuF1–3, Mar. 2001.

    Google Scholar 

  4. M. Akita et al., “Third generation FEC employing turbo product code for long-haul DWDM transmission systems,” in Tech. Dig. Optical Fiber in Proc. OFC 2002, pp. 289–290, Mar. 2002.

    Google Scholar 

  5. T. Mizuochi et al., “Experimental demonstration of net coding gain of 10.1 dB using 12.4 Gb/s block turbo code with 3-bit soft decision,” in Proc. OFC 2003, pp. PD21–1–PD21–3, Mar. 2003.

    Google Scholar 

  6. G. Bosco, G. Montorsi, and S. Benedetto, “Soft decoding in optical systems,” IEEE Trans. Commun., vol. 51, no. 8, pp. 1258–1265, Aug. 2003.

    Google Scholar 

LDPC codes

  1. T. J. Richardson and R. L. Urbanke, “Efficient encoding of low-density parity-check codes,” IEEE Trans. Inform. Theory, vol. 47, no. 2, pp. 638–656, Feb. 2001.

    MathSciNet  Google Scholar 

  2. T. J. Richardson, M. A. Shokrollahi, and R. L. Urbanke, “Design of capacity-approaching irregular low-density parity-check codes,” IEEE Trans. Inform. Theory, vol. 47, no. 2, pp. 619–637, Feb. 2002.

    MathSciNet  Google Scholar 

  3. M. G Luby, M. Mitzenmacher, M. A. Shokrollahi, and D. A. Spielman, “Improved low-density parity-check codes using irregular graphs,” IEEE Trans. Inform. Theory, vol. 47, no. 2, pp. 585–598, Feb. 2001.

    MathSciNet  Google Scholar 

  4. B. Vasic and I. B. Djordjevic, “Low-density parity check codes for long haul optical communications systems,” IEEE Photon. Technol. Lett., vol. 14, no. 8, pp. 1208–1210, Aug. 2002.

    Article  Google Scholar 

  5. I. B. Djordjevic, S. Sankaranarayanan, and B. V. Vasic, “Projective-Plane Iteratively Decodable Block Codes for WDM High-Speed Long-Haul Transmission Systems,” J. Lightwave Technol., vol. 22, no. 3, pp. 695–702, Mar. 2004.

    Article  Google Scholar 

  6. I. B. Djordjevic, B. V. Vasic, and S. Sankaranarayanan, “Regular and Irregular Low-Density Parity-Check Codes for Ultra-Long Haul High-Speed Optical Communications: Construction and Performance Analysis,” in Proc. OFC 2004, paper WM4, Mar. 2004.

    Google Scholar 

  7. G. Bosco and S. Benedetto, “Soft Decoding in Optical Systems: Turbo Product Codes vs. LDPC Codes,” in Proc. TIWDC 2004, Pisa (Italy), pp. 79–86, Oct. 2004.

    Google Scholar 

Decoders architectures

  1. M. M. Mansour and N. R. Shanbhag, “High-throughput LDPC decoders,” IEEE Trans. VLSI Syst., vol. 11, no. 6, pp. 976–996, Dec. 2003.

    Article  Google Scholar 

  2. A. Selvarathinam, E. Kim, and G. Choi, “Low-Density Parity-Check Decoder Architecture for High Throughput Optical Fiber Channels,” in Proc. ICCD’03, pp. 520–525.

    Google Scholar 

  3. H. Zhong and T. Zhang, “Design of VLSI Implementation-Oriented LDPC Codes,” in Proc. IEEE Semiannual Vehicular Technology Conference, Oct. 2003

    Google Scholar 

  4. B. Bougard, A. Giulietti, L. Van der Perre, and F. Catthoor, “A class of power efficient VLSI architectures for high speed turbo-decoding,” in Proc. GLOBECOM 2002, vol. 1, pp. 549–553.

    Google Scholar 

  5. R. Dobkin, M. Peleg, and R. Ginosar, “Parallel VLSI architectures and Parallel Interleaving Design for Low-Latency MAP Turbo Decoders,” Technical Report CCIT-TR436.

    Google Scholar 

  6. A. Tarable, G. Montorsi, and S. Benedetto, “Mapping interleaving laws to parallel Turbo decoder architectures,” in Proc. 3rd International Symposium on Turbo Codes and Related Topics, pp. 153–156, Brest, France, Sep. 2003.

    Google Scholar 

  7. M.J. Thul, F. Gilbert, and N. Wehn, “Optimized concurrent interleaving architecture for high-throughput turbo decoding,” in Proc. 9th Int. Conf. on Electronics, Circuits and Systems 2002, vol. 3, pp. 1099–1102.

    Google Scholar 

  8. J. Hagenauer et al., “Analog turbo-networks in VLSI: the next step in turbo decoding and equalization,” in Proc. 2nd Intl. Symp. on Turbo Codes, Brest, France (Sept. 4-7,2000).

    Google Scholar 

  9. H.-A. Loeliger, F. Lustenberger, and M. Helfestein, F. Tarkoy “Probability propagation and decoding in analog VLSI,” IEEE Trans. Inform. Theory, vol. 47, no. 2, pp. 837–843, Feb. 2001.

    Article  Google Scholar 

  10. V.C. Gaudet and P.G. Gulak, “A 13.3-Mb/s 0.35-/spl mu/m CMOS analog turbo decoder IC with a configurable interleaver,” IEEE J. Solid-State Circuits, vol. 38, no. 11, pp. 2010–2015, Nov. 2003.

    Article  Google Scholar 

  11. C. Winstead, J. Dai, S. Yu, C. Myers, R. R. Harrison, and C. Schlegel, “CMOS analog MAP decoder for (8,4) Hamming code,” IEEE J. Solid-State Circuits, vol. 39, no. 1, pp. 122–131, Jan. 2004.

    Article  Google Scholar 

Other codes

  1. H. Bulow, G. Thielecke, and F. Buchali, “Optical Trellis-Coded Modulation (oTCM),” in Proc. OFC 2004, paper WM5, Mar. 2004.

    Google Scholar 

  2. Y. Katayama and T. Yamane, “Concatenation of interleaved binary/non-binary block codes fo rimproved forward error correction,” in Proc. OFC 2003, vol. 1, pp. 391–393, Mar. 2003.

    Google Scholar 

  3. P. Faraj, J. Leibrich, and W. Rosenkranz, “Coding gain of basic FEC block-codes in the presence of ASE noise,” in Proc. ICTON 2003, pp. 80–83.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science + Business Media, Inc. Boston

About this chapter

Cite this chapter

Benedetto, S., Bosco, G. (2005). Channel Coding for Optical Communications. In: Forestieri, E. (eds) Optical Communication Theory and Techniques. Springer, Boston, MA. https://doi.org/10.1007/0-387-23136-6_8

Download citation

  • DOI: https://doi.org/10.1007/0-387-23136-6_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-23132-7

  • Online ISBN: 978-0-387-23136-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics