Skip to main content

Abstract

The atomic-scale and mesoscopic physics of magnetic nanostructures is reviewed. Emphasis is on the description of magnetic phenomena and properties by analytical models, as contrasted to numerical approaches. Nanostructuring affects the magnetic properties on different length scales, from a few interatomic distances for intrinsic properties such as magnetization and anisotropy to more than 10 nm for extrinsic properties, such as coercivity. The consideration includes static and dynamic mechanisms, as well as nanoscale finite-temperature effects. Some explicitly discussed examples are Curie-temperature changes due to nanostructuring, the effect of narrow and constricted walls, the potential use of magnetic nanodots for finite-temperature quantum computing, and exchange-coupled hard-soft nanocomposites. The temperature dependence of extrinsic properties reflects the atomic-scale static or ‘intrinsic’ temperature dependence of the free-energy barriers and thermally activated dynamic or ‘extrinsic’ jumps over metastable free-energy barriers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W. Heisenberg, Z. Phys. 49, 619 (1928).

    MATH  ADS  Google Scholar 

  2. F. Bloch, Z. Phys. 57, 545 (1929).

    MATH  ADS  Google Scholar 

  3. J. C. Slater, Phys. Rev. 49, 537–545 (1936).

    ADS  Google Scholar 

  4. E. C. Stoner, Proc. Roy. Soc. A 165, 372 (1938).

    ADS  Google Scholar 

  5. R. Skomski, J. Phys.: Condens. Matter 15, R841 (2003).

    ADS  Google Scholar 

  6. R. Skomski, J. Magn. Magn. Mater. 272–276, 1476 (2004).

    Google Scholar 

  7. F. Bloch and G. Gentile, Z. Phys. 70, 395 (1931).

    MATH  ADS  Google Scholar 

  8. H. Brooks, Phys. Rev. 58, 909 (1940).

    MATH  ADS  Google Scholar 

  9. R. Skomski, H.-P. Oepen, and J. Kirschner, Phys. Rev. B 58, 3223 (1998).

    ADS  Google Scholar 

  10. E. Ising, Z. Phys. 31, 253 (1925).

    ADS  Google Scholar 

  11. J. C. Slater, Rev. Mod. Phys. 25, 199 (1953).

    MATH  ADS  Google Scholar 

  12. Depending on the context, the real structure is also known as the defect structure, morphology, or metallurgical microstructure. For example, see: D. Sander, Rep. Prog. Phys. 62, 809 (1999).

    ADS  Google Scholar 

  13. F. Bloch, Z. Phys. 74, 295 (1932).

    MATH  ADS  Google Scholar 

  14. L. Landau and E. Lifshitz, Phys. Z. Sowjetunion 8, 153 (1935).

    MATH  Google Scholar 

  15. M. Kersten, Z. Phys. 44, 63 (1943).

    Google Scholar 

  16. R. Skomski and J. M. D. Coey, “Permanent Magnetism”, Institute of Physics, Bristol 1999.

    Google Scholar 

  17. C. Kittel, “Introduction to Solid State Physics”, Wiley, New York 1986.

    Google Scholar 

  18. B. T. Thole, P. Carra, F. Sette, and G. van der Laan, Phys. Rev. Lett. 68, 1943 (1992).

    ADS  Google Scholar 

  19. Both spin-orbit coupling and Zeeman interactions are obtained as terms in the Pauli expansion of the Dirac equation.

    Google Scholar 

  20. F. Cyrot-Lackmann, J. Phys. Chem. Solids 29, 1235 (1968).

    ADS  Google Scholar 

  21. V. Heine, Solid State Phys. 35, 1 (1980).

    Google Scholar 

  22. A. P. Sutton, “Electronic Structure of Materials”, Oxford University Press, Oxford 1993.

    Google Scholar 

  23. M. C. Desjonquères and D. Spanjaard, “Concepts in Surface Physics”, Springer, Berlin 1993.

    Google Scholar 

  24. J. S. Smart, “Effective Field Theories of Magnetism”, Saunders, Philadephia 1966.

    Google Scholar 

  25. N. H. Duc, T. D. Hien, D. Givord, J. J. M. Franse, and F. R. de Boer, J. Magn. Magn. Mater. 124, 305 (1993).

    ADS  Google Scholar 

  26. N. W. Ashcroft and N. D. Mermin, “Solid State Physics”, Saunders, Philadelphia 1976.

    Google Scholar 

  27. R. Skomski, Europhys. Lett. 48, 455 (1999).

    ADS  Google Scholar 

  28. R. Skomski, R. F. Sabiryanov, and S. S. Jaswal, J. Appl. Phys. 87, 5890 (2000).

    ADS  Google Scholar 

  29. J. A. De Toro, M. A. López de la Torre, J. M. Riveiro, J. Bland, J. P. Goff, and M. F. Thomas, Phys. Rev. B 64, 224421 (2001).

    ADS  Google Scholar 

  30. D. J. Priour Jr., E. H. Hwang, and S. Das Sarma, Phys. Rev. Lett. 92, 117201 (2004).

    ADS  Google Scholar 

  31. J. M. D. Coey, M. Venkatesan, and C. B. Fitzgerald, Nature Materials 2, 173 (2005).

    ADS  Google Scholar 

  32. D. C. Mattis, “Theory of Magnetism”, Harper and Row, New York 1965.

    Google Scholar 

  33. K. Moorjani and J. M. D. Coey, “Magnetic Glasses”, Elsevier, Amsterdam 1984.

    Google Scholar 

  34. P. Fulde, “Electron Correlations in Molecules and Solids”, Springer, Berlin 1991.

    Google Scholar 

  35. J. M. Yeomans, “Statistical Mechanics of Phase Transitions”, University Press, Oxford 1992.

    Google Scholar 

  36. R. Skomski and D. J. Sellmyer, J. Appl. Phys. 87, 4756 (2000).

    ADS  Google Scholar 

  37. R. Skomski, D. Leslie-Pelecky, R. D. Kirby, A. Kashyap, and D. J. Sellmyer, Scripta Mater. 48, 857 (2003).

    Google Scholar 

  38. H. R. Ma and C. H. Tsai, Solid State Commun. 55, 499 (1985).

    ADS  Google Scholar 

  39. W. Maciejewski and A. Duda, Solid State Commun. 64, 557 (1987).

    ADS  Google Scholar 

  40. H. K. Sy, Phys. Lett. A 120, 203 (1987).

    ADS  Google Scholar 

  41. W. Maciejewski, IEEE Trans. Magn. 26, 213 (1990).

    ADS  Google Scholar 

  42. R. W. Wang and D. L. Mills, Phys. Rev. B 46, 11681 (1992).

    ADS  Google Scholar 

  43. There are a few exceptions, such as very weak itinerant ferromagnets (for example ZrZn2) and low-spin high-spin transition in fcc iron.

    Google Scholar 

  44. R. Skomski, A. Kashyap, and D. J. Sellmyer, IEEE Trans. Magn. 39, 2917 (2003).

    ADS  Google Scholar 

  45. P. Mohn, “Magnetism in the Solid State”, Springer, Berlin 2003.

    Google Scholar 

  46. A. Kashyap, R. Skomski, R. F. Sabiryanov, S. S. Jaswal, and D. J. Sellmyer, IEEE Trans. Magn. 39, 2908 (2003).

    ADS  Google Scholar 

  47. R. Skomski and P. A. Dowben, Europhys. Lett. 58, 544 (2002).

    ADS  Google Scholar 

  48. K.-H. Fischer and A. J. Hertz, “Spin Glasses”, University Press, Cambridge 1991.

    Google Scholar 

  49. D. Sander, R. Skomski, C. Schmidthals, A. Enders, and J. Kirschner, Phys. Rev. Lett. 77, 2566 (1996).

    ADS  Google Scholar 

  50. M. Farle, Rep. Prog. Phys. 61, 755 (1998).

    ADS  Google Scholar 

  51. R. M. Bozorth, “Ferromagnetism”, van Nostrand, Princeton, New Jersey 1951.

    Google Scholar 

  52. H. Zeng, M. Zheng, R. Skomski, D. J. Sellmyer, Y. Liu, L. Menon, and S. Bandyopadhyay, J. Appl. Phys. 87, 4718 (2000).

    ADS  Google Scholar 

  53. G. T. A. Huysmans and J. C. Lodder, J. Appl. Phys. 64, 2016 (1988).

    ADS  Google Scholar 

  54. M. Zheng, R. Skomski R, Y. Liu, and D. J. Sellmyer, J. Phys.: Condens. Matter. 12, L497 (2000).

    ADS  Google Scholar 

  55. D. J. Sellmyer, M. Zheng, and R. Skomski, J. Phys.: Condens. Matter 13, 433 (2001).

    ADS  Google Scholar 

  56. J. A. Osborn, Phys. Rev. 67, 351 (1945).

    ADS  Google Scholar 

  57. H. Bethe, Ann. Physik, 3, 133 (1929).

    MATH  ADS  Google Scholar 

  58. C. J. Ballhausen, “Ligand Field Theory”, McGraw-Hill, New York 1962.

    MATH  Google Scholar 

  59. M. T. Hutchings, Solid State Phys. 16, 227 (1964).

    Google Scholar 

  60. J. F. Herbst, Rev. Mod. Phys. 63, 819 (1991).

    ADS  Google Scholar 

  61. J. M. D. Coey (ed.), “Rare-earth Iron Permanent Magnets”, University Press, Oxford 1996.

    Google Scholar 

  62. L. Néel, J. Phys. Radium 15, 225 (1954).

    MATH  Google Scholar 

  63. Y. Millev, R. Skomski, and J. Kirschner, Phys. Rev. B 58, 6305 (1998).

    ADS  Google Scholar 

  64. J. A. C. Bland and B. Heinrich (eds.), “Ultrathin Magnetic Structures I”, Springer, Berlin 1994.

    Google Scholar 

  65. M. T. Johnson, P. J. H. Bloemen, F. J. A. den Broeder, and J. J. de Vries, Rep. Prog. Phys. 59, 1409 (1996).

    ADS  Google Scholar 

  66. U. Gradmann, in: “Handbook of Magnetic Materials”, Vol. 7, Ed. K. H. J. Buschow, Elsevier, Amsterdam 1993, p. 1.

    Google Scholar 

  67. R. H. Victora and J. M. McLaren, Phys. Rev. B 47, 11583 (1993).

    ADS  Google Scholar 

  68. M. Jamet, W. Wernsdorfer, C. Thirion, D. Mailly, V. Dupuis, P. Mélinon, and A Pérez, Phys. Rev. Lett. 86, 4676 (2001).

    ADS  Google Scholar 

  69. D. S. Chuang, C. A. Ballentine, and R. C. O’Handley, Phys. Rev. B 49, 15084 (1994).

    ADS  Google Scholar 

  70. J. G. Gay and R. Richter, Phys. Rev. Lett. 56, 2728 (1986).

    ADS  Google Scholar 

  71. G. H. O. Daalderop, P. J. Kelly, and M. F. H. Schuurmans, Phys. Rev. B 42, 7270 (1990).

    ADS  Google Scholar 

  72. D.-S. Wang, R.-Q. Wu, and A. J. Freeman, Phys. Rev. B 47, 14932 (1993).

    ADS  Google Scholar 

  73. M. Eisenbach, B. L. Györffy, G. M. Stocks, and B. Újfalussy, Phys. Rev. B 65, 144424 (2002).

    ADS  Google Scholar 

  74. M. Komelj, C. Ederer, J. W. Davenport, and M. Fähnle, Phys. Rev. B 66, 140407 (2002).

    ADS  Google Scholar 

  75. J.-F. Hu, I. Kleinschroth, R. Reisser, H. Kronmüller, and Sh. Zhou, phys. stat. sol. (a) 138, 257 (1993).

    ADS  Google Scholar 

  76. E. Lectard, C. H. Allibert, and R. Ballou, J. Appl. Phys. 75, 6277 (1994).

    ADS  Google Scholar 

  77. K. Kumar, J. Appl. Phys. 63, R13 (1988).

    ADS  Google Scholar 

  78. R. Skomski, J. Appl. Phys. 83, 6724 (1998).

    ADS  Google Scholar 

  79. J. M. Cadogan, J. P. Gavigan, D. Givord, and H. S. Li, J. Phys. F: Met. Phys. 18, 779 (1988).

    ADS  Google Scholar 

  80. J. F. Liu, T. Chui, D. Dimitrov, and G. C. Hadjipanayis, Appl. Phys. Lett. 85, 3007 (1998).

    ADS  Google Scholar 

  81. E. R. Callen and H. B. Callen, Phys. Rev., 129, 578 (1963).

    MATH  ADS  Google Scholar 

  82. J. B. Staunton, S. Ostanin, S. S. A. Razee, B. L. Gyorffy, L. Szunyogh, B. Ginatempo, and E. Bruno, Phys. Rev. Lett. 93, 257204 (2004).

    ADS  Google Scholar 

  83. R. Skomski, J. Appl. Phys. 91, 8489 (2002).

    ADS  Google Scholar 

  84. O. N. Mryasov, U. Nowak, K. Guslienko, and R. Chantrell, Europhys. Lett. 69, 805 (2005); O. N. Mryasov, U. Nowak, K. Guslienko, and R. Chantrell, unpublished (2004).

    ADS  Google Scholar 

  85. N.H. Hai, N. M. Dempsey, and D. Givord, IEEE Trans. Magn. 39, 2914 (2003).

    ADS  Google Scholar 

  86. G. H. O. Daalderop, P. J. Kelly, and M. F. H. Schuurmans, in: “Ultrathin magnetic structures I”, Eds.: J.A.C. Bland and B. Heinrich, Springer, Berlin 1994, p. 40.

    Google Scholar 

  87. G. Brown, B. Kraczek, A. Janotti, T. C. Schulthess, G. M. Stocks, and D. D. Johnson, Phys. Rev. B 68, 052405 (2003).

    ADS  Google Scholar 

  88. R. A. McCurrie, “Ferromagnetic Materials—Structure and Properties”, Academic Press, London 1994.

    Google Scholar 

  89. J. Zhou, R. Skomski, K. D. Sorge, and D. J. Sellmyer, Scripta Materialia (2005) (in press).

    Google Scholar 

  90. W. F. Brown, “Micromagnetics”, Wiley, New York 1963.

    Google Scholar 

  91. The prefix ‘micro’ originates from the greek word □□□□óς, meaning “small” but not implying any well-defined length scale.

    Google Scholar 

  92. M. Sagawa, S. Fujimura, N. Togawa, H. Yamamoto, and Y. Matsuura, J. Appl. Phys. 55, 2083 (1984); M. Sagawa, S. Hirosawa, H. Yamamoto, S. Fujimura and Y. Matsuura, Jpn. J. Appl. Phys. 26, 785 (1987).

    ADS  Google Scholar 

  93. A. Aharoni, “Introduction to the Theory of Ferromagnetism”, University Press, Oxford, 1996.

    Google Scholar 

  94. H. R. Hilzinger and H. Kronmüller, phys. stat. sol. (b), 54, 593, (1972).

    ADS  Google Scholar 

  95. R. Skomski, in: “Spin Electronics”, Eds.: M. Ziese and M. J. Thornton, Springer, Berlin 2001, p. 204.

    Google Scholar 

  96. R. Skomski, H. Zeng, and D. J. Sellmyer, IEEE Trans. Magn. 37, 2549 (2001).

    ADS  Google Scholar 

  97. C. Kittel, Rev. Mod. Phys. 21, 541 (1949).

    ADS  Google Scholar 

  98. D. J. Craik and R. S. Tebble, Rep. Prog. Phys. 24, 116 (1961).

    ADS  Google Scholar 

  99. R. Becker and W. Döring, “Ferromagnetismus”, Springer, Berlin 1939.

    MATH  Google Scholar 

  100. S. Chikazumi, “Physics of Magnetism”, Wiley, New York 1964.

    Google Scholar 

  101. M. Hehn, K. Ounadjela, J. Bucher, F. Rousseaux, D. Decanini, B. Bartenlian, and C. Chappert, Science 272, 1782 (1995).

    ADS  Google Scholar 

  102. R. Skomski, A. Kashyap, K. D. Sorge, and D. J. Sellmyer, J. Appl. Phys. 95, 7022 (2004).

    ADS  Google Scholar 

  103. E. C. Stoner and E. P. Wohlfarth, Phil. Trans. Roy. Soc. A 240, 599 (1948). reprinted in IEEE Trans. Magn. MAG-27, 3475 (1991).

    MATH  ADS  Google Scholar 

  104. A. Aharoni, Rev. Mod. Phys. 34, 227 (1962).

    ADS  Google Scholar 

  105. R. Skomski, J. P. Liu, and D. J. Sellmyer, Phys. Rev. B 60, 7359 (1999).

    ADS  Google Scholar 

  106. R. Skomski, J. Zhou, A. Kashyap, and D. J. Sellmyer, IEEE Trans. Magn. 40, 2946 (2004).

    ADS  Google Scholar 

  107. J. Zhou, R. Skomski, C. Chen, G.C. Hadjipanayis, and D.J. Sellmyer, Appl. Phys. Lett. 77, 1514 (2000).

    ADS  Google Scholar 

  108. J. Zhou, A. Kashyap, Y. Liu, R. Skomski, and D. J. Sellmyer., IEEE Trans. Magn. 40, 2940 (2004).

    ADS  Google Scholar 

  109. W. F. Brown, Rev. Mod. Phys. 17, 15 (1945).

    ADS  Google Scholar 

  110. R. Skomski, phys. stat. sol. (b) 174, K77 (1992).

    ADS  Google Scholar 

  111. R. Skomski and J. M. D. Coey, Phys. Rev. B 48, 15812 (1993).

    ADS  Google Scholar 

  112. R. Skomski, J. Appl. Phys. 83, 6503 (1998).

    ADS  Google Scholar 

  113. S. Nieber and H. Kronmüller, phys. stat. sol. (b) 153, 367 (1989).

    ADS  Google Scholar 

  114. R. Skomski, H. Zeng, M. Zheng, and D. J. Sellmyer, Phys. Rev. B 62, 3900 (2000).

    ADS  Google Scholar 

  115. R. Skomski, J. Appl. Phys. 91, 7053 (2002).

    ADS  Google Scholar 

  116. R. Coehoorn, D. B. de Mooij, J. P. W. B. Duchateau, and K. H. J. Buschow, J. de Physique 49,C-8 669 (1988).

    Google Scholar 

  117. E. F. Kneller and R. Hawig, IEEE Trans. Magn. 27, 3588 (1991).

    ADS  Google Scholar 

  118. I. A. Al-Omari and D. J. Sellmyer, Phys. Rev. B 52, 3441 (1995).

    ADS  Google Scholar 

  119. J. P. Liu, C. P. Luo, Y. Liu, and D. J. Sellmyer, Appl. Phys. Lett. 72, 483 (1998).

    ADS  Google Scholar 

  120. E. E. Fullerton, J. S. Jiang, C. H. Sowers, J. E. Pearson, and S. D. Bader, Appl. Phys. Lett. 72, 380 (1998).

    ADS  Google Scholar 

  121. J. Ding, Y. Liu, P. G. Mccormick, and R. Street, J. Appl. Phys. 75, 1032 (1994).

    ADS  Google Scholar 

  122. E. Callen, Y. J. Liu, and J. R. Cullen, Phys. Rev. B 16, 263 (1977).

    ADS  Google Scholar 

  123. K.-H. Müller, J. Schneider, A. Handstein, D. Eckert, P. Nothnagel, and H. R. Kirchmayr, Mat. Sci. Eng. A133, 151 (1991).

    Google Scholar 

  124. A. Manaf, P. A. Buckley, and H. A. Davies, J. Magn. Magn. Mater. 128, 302 (1993).

    ADS  Google Scholar 

  125. H.-W. Zhang, B.-H. Li, J. Wang, J. Zhang, Sh.-Y. Zhang, and B.-G. Shen, J. Phys. D: Appl. Phys. 33, 3022 (2000).

    ADS  Google Scholar 

  126. E. E. Fullerton, S. J. Jiang, and S. D. Bader, J. Magn. Magn. Mater. 200, 392 (1999).

    ADS  Google Scholar 

  127. M. Sawicki, G. J. Bowden, P. A. J. de Groot, B. D. Rainford, J. M. L. Beaujour, R. C. C. Ward, and M. R. Wells, Phys. Rev. B 62, 5817 (2000).

    ADS  Google Scholar 

  128. R. J. Astalos and R. E. Camley, Phys. Rev. B 58, 8646 (1998).

    ADS  Google Scholar 

  129. G. C. Hadjipanayis, J. Magn. Magn. Mater. 200, 373 (1999).

    ADS  Google Scholar 

  130. G. J. Bowden, J. M. L. Beaujour, S. Gordeev, P. A. J. de Groot, B. D. Rainford, and M. Sawicki, J. Phys.: Condens. Matter 12, 9335 (2000).

    ADS  Google Scholar 

  131. Y. Yoshizawa, S. Oguma, and K. Yamauchi, J. Appl. Phys. 64, 6044 (1988).

    ADS  Google Scholar 

  132. R. Coehoorn, D. B. de Mooij, and C. de Waard, J. Magn. Magn. Mater. 80, 101 (1989).

    ADS  Google Scholar 

  133. R. Street and J. C. Wooley, Proc. Phys. Soc. A62, 562 (1949).

    ADS  Google Scholar 

  134. E. Kneller, in: “Handbuch der Physik XIII/2: Ferromagnetismus”, Ed.: H. P. J. Wijn, Springer, Berlin 1966, p. 438.

    Google Scholar 

  135. L. Néel, Ann. Géophys. 5, 99 (1949).

    Google Scholar 

  136. E. Kneller, “Ferromagnetismus’, Springer, Berlin 1962.

    MATH  Google Scholar 

  137. W. F. Brown, Phys. Rev. 130, 1677 (1963).

    ADS  Google Scholar 

  138. R. Zwanzig, Phys. Rev. 124, 983 (1961).

    MATH  ADS  Google Scholar 

  139. H. Mori, Prog. Theor. Phys. 33, 423 (1965).

    MATH  ADS  Google Scholar 

  140. R. Skomski, R. D. Kirby, and D. J. Sellmyer, J. Appl. Phys. 85, 5069 (1999).

    ADS  Google Scholar 

  141. W. F. Brown, J. Appl. Phys. 30, 625 (1959).

    Google Scholar 

  142. S. V. Vonsovskii, “Ferromagnetic Resonance”, Pergamon Press, Oxford 1966.

    Google Scholar 

  143. S. V. Vonsovskii, “Magnetism”, John Wiley, New York 1974.

    Google Scholar 

  144. Multidimensional relations are obtained as straightforward vector generalization in spin space, s → s [5].

    Google Scholar 

  145. H. A. Kramers, Physica 7, 284 (1940).

    MATH  MathSciNet  ADS  Google Scholar 

  146. P. Hänggi, P. Talkner, and M. Borkovec, Rev. Mod. Phys. 62, 251 (1990).

    ADS  Google Scholar 

  147. F. Bloch, Z. Phys. 61, 206 (1930).

    MATH  ADS  Google Scholar 

  148. F. J. Dyson, Phys. Rev. 102, 1217 (1956).

    MathSciNet  ADS  MATH  Google Scholar 

  149. J. R. Eshbach and R. W. Damon, Phys. Rev. 118, 1208 (1960).

    ADS  Google Scholar 

  150. J. Shen, R. Skomski, M. Klaua, H. Jenniches, S. S. Manoharan, and J. Kirschner, Phys. Rev. B 56, 2340 (1997).

    ADS  Google Scholar 

  151. R. Arias, and D. L. Mills, Phys. Rev. B 63, 134439 (2001).

    ADS  Google Scholar 

  152. J. Jorzick, S. O. Demokritov, B. Hillebrands, M. Bailleul, C. Fermon, K. Y. Guslienko, A. N. Slavin, D. V. Berkov, and N. L. Gorn, Phys. Rev. Lett. 88, 047204 (2002).

    ADS  Google Scholar 

  153. M. I. Chipara, R. Skomski, and D. J. Sellmyer, J. Magn. Magn. Mater. 249, 246 (2002).

    ADS  Google Scholar 

  154. Z. K. Wang, M. H. Kuok, S. C. Ng, D. J. Lockwood, M. G. Cottam, K. Nielsch, R. B. Wehrspohn, and U. Gösele, Phys. Rev. Lett. 89, 027201 (2002).

    ADS  Google Scholar 

  155. K. Y. Guslienko, B. A. Ivanov, V. Novosad, Y. Otani, H. Shima, and K. Fukamichi, J. Appl. Phys. 91, 8037 (2002).

    ADS  Google Scholar 

  156. U. Ebels, J.-L. Duvail, P. E. Wigen, L. Piraux, L. D. Buda, and K. Ounadjela, Phys. Rev. B 64, 144421 (2001).

    ADS  Google Scholar 

  157. P. W. Anderson, Phys. Rev. B 109, 1492 (1958).

    ADS  Google Scholar 

  158. H. Zeng, R. Skomski, L. Menon, Y. Liu, S. Bandyopadhyay, and D. J. Sellmyer Phys. Rev. B 65, 134426 (2002).

    ADS  Google Scholar 

  159. D. J. Sellmyer, M. Yu, R. A. Thomas, Y. Liu, and R. D. Kirby, Phys. Low-Dim. Struct. 1–2, 155 (1998).

    Google Scholar 

  160. C. P. Bean and J. D. Livingston, J. Appl. Phys. 30, 120S (1959).

    ADS  Google Scholar 

  161. E. P. Wohlfarth, J. Phys. F: Met. Phys. 14, L155 (1984).

    ADS  Google Scholar 

  162. S. W. Charles, in: “Studies of Magnetic Properties of Fine Particles and their Relevance to Materials Science”, Eds.: J. L. Dormann and D. Fiorani, Elsevier, Amsterdam 1992, p. 267.

    Google Scholar 

  163. S. F. Edwards and P. W. Anderson, J. Phys. F, 5, 965 (1975).

    ADS  Google Scholar 

  164. L. Néel, J. de Phys. Rad. 12, 339(1951).

    Google Scholar 

  165. P. Gaunt, Phil. Mag. B 48, 261 (1983).

    Google Scholar 

  166. P. Gaunt, J. Appl. Phys. 59, 4129 (1986).

    ADS  Google Scholar 

  167. R. Skomski and V. Christoph, phys. stat. sol. (b) 156, K149 (1989).

    ADS  Google Scholar 

  168. D. Givord and M. F. Rossignol, in “Rare-earth Iron Permanent Magnets”, Ed.: J. M. D. Coey, University Press, Oxford 1996. p. 218.

    Google Scholar 

  169. D. J. Sellmyer, M. Yu, and R. D. Kirby, “Nanostructured Mater”. 12, 1021 (1999).

    Google Scholar 

  170. D. Givord, A. Lienard, P. Tenaud, and T. Viadieu, J. Magn. Magn. Mater. 67, L281 (1987).

    ADS  Google Scholar 

  171. D. Givord, Q. Lu, M. F. Rossignol, P. Tenaud, and T. Viadieu, J. Magn. Magn. Mater. 83, 183 (1990).

    ADS  Google Scholar 

  172. M. P. Sharrock, J. Appl. Phys. 76, 6413 (1994).

    ADS  Google Scholar 

  173. L. Néel, J. de Phys. Rad. 11, 49 (1950).

    Google Scholar 

  174. R. H. Victora, Phys. Rev. Lett. 63, 457 (1989);65, 1171 (1990).

    ADS  Google Scholar 

  175. D. J. Sellmyer and R. Skomski, Sripta Materialia 47, 531 (2002).

    Google Scholar 

  176. J. Moritz, B. Dieny, J. P. Nozières, Y. Pennec, J. Camarero, and S. Pizzini, Phys. Rev. B 71, 100402R (2005).

    ADS  Google Scholar 

  177. J. D. Livingston and C. P. Bean, J. Appl. Phys. 32, 1964 (1961).

    ADS  Google Scholar 

  178. E. F. Kneller and F. E. Luborsky, J. Appl. Phys. 34, 656 (1959).

    ADS  Google Scholar 

  179. R. Skomski and D. J. Sellmyer, J. Appl. Phys. 89, 7263 (2001).

    ADS  Google Scholar 

  180. J. P. Liu, R. Skomski, Y. Liu, and D. J. Sellmyer, J. Appl. Phys. 87, 6740 (2000).

    ADS  Google Scholar 

  181. F. Preisach, Z. Phys. 94, 277 (1935).

    ADS  Google Scholar 

  182. G. Bertotti and V. Basso, J. Appl. Phys. 73, 5827 (1993).

    ADS  Google Scholar 

  183. P. Wohlfarth, J. Appl. Phys. 29, 595 (1958).

    ADS  Google Scholar 

  184. D. Henkel, Phys. Stat. Sol. 7, 919 (1964).

    ADS  Google Scholar 

  185. X.-D. Che and N. H. Bertram, J. Magn. Magn. Mater. 116, 121 (1992).

    ADS  Google Scholar 

  186. V. Basso, M. LoBue, and G. Bertotti, J. Appl. Phys. 75, 5677 (1994).

    ADS  Google Scholar 

  187. R. J. Veitch, IEEE Trans. Magn. 26, 1876 (1990).

    ADS  Google Scholar 

  188. G. Herzer, Scripta Metal. 33, 1741 (1995).

    Google Scholar 

  189. H. Fukunaga and H. Inoue, Jpn. J. Appl. Phys. 31, 1347 (1992).

    ADS  Google Scholar 

  190. J. J. Versluijs, M. A. Bari, and J. M. D. Coey, Phys. Rev. Lett. 87, 026601 (2001).

    ADS  Google Scholar 

  191. E. Goto, N. Hayashi, T. Miyashita, and K. Nakagawa, J. Appl. Phys. 36, 2951 (1965).

    ADS  Google Scholar 

  192. Y. Imry and S.-K. Ma, Phys. Rev. Lett. 35, 1399 (1975).

    ADS  Google Scholar 

  193. R. Harris, M. Plischke, and M. J. Zuckermann, Phys. Rev. Lett. 31, 160 (1973).

    ADS  Google Scholar 

  194. E. M. Chudnovsky, W. M. Saslow, and R. A. Serota, Phys. Rev. B 33, 251 (1986).

    ADS  Google Scholar 

  195. D. J. Sellmyer, M. J. O’Shea, in: “Recent Progress in Random Magnets”, Ed. D. H. Ryan, World Scientific, Singapore 1992, p. 71.

    Google Scholar 

  196. G. Herzer, J. Magn. Magn. Mater. 112, 258 (1992).

    ADS  Google Scholar 

  197. C. H. Bennet and D. P. DiVincenzo, Nature (London) 404, 247 (2000).

    ADS  Google Scholar 

  198. A. Ekert and R Josza, Rev. Mod. Phys. 68, 733 (1996).

    ADS  Google Scholar 

  199. L. K. Grover, Phys. Rev. Lett. 79, 325 (1997).

    ADS  Google Scholar 

  200. G. Lagmago Kamta and A. F. Starace, Phys. Rev. Lett. 88, 107901 (2002)

    ADS  Google Scholar 

  201. F. Meier, J. Levy, and D. Loss, Phys. Rev. Lett. 90, 047901 (2003).

    ADS  Google Scholar 

  202. J. Tejada, E. M. Chunovsky, E. del Barco, J. M. Hernandez, and T. P. Spiller, Nanotechnology 12, 181 (2001).

    ADS  Google Scholar 

  203. R. Skomski, A. Y. Istomin, A. F. Starace, and D. J. Sellmyer, Phys. Rev. A 70, 062307 (2004).

    ADS  Google Scholar 

  204. R. Skomski, A. Kashyap, Y. Qiang, and D. J. Sellmyer, J. Appl. Phys. 93, 6477 (2003).

    ADS  Google Scholar 

  205. S. Hill and W. K. Wootters, Phys. Rev. Lett. 78, 5022 (1997).

    ADS  Google Scholar 

  206. R. Skomski, A. Y. Istomin, J. Zhou, A. F. Starace, and D. J. Sellmyer, J. Appl. Phys. 97, 10R511 (2005).

    Google Scholar 

  207. M. S. S. Brooks and B. Johansson, in: “Handbook of Magnetic Materials”, Vol. 7, Ed.: K. H. J. Buschow, Elsevier, Amsterdam 1993, p. 139.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Skomski, R., Zhou, J. (2006). Nanomagnetic Models. In: Sellmyer, D., Skomski, R. (eds) Advanced Magnetic Nanostructures. Springer, Boston, MA. https://doi.org/10.1007/0-387-23316-4_3

Download citation

Publish with us

Policies and ethics