Skip to main content

Angiostatin

Generation, Structure and Function of the Isoforms

  • Chapter
Cytokines and Cancer

Part of the book series: Cancer Treatment and Research ((CTAR,volume 126))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Folkman, J. Tumor angiogenesis: therapeutic implications. N Engl J Med 285, 1182–6 (1971).

    Article  PubMed  CAS  Google Scholar 

  2. Bouck, N., Stellmach, V. & Hsu, S. C. How tumors become angiogenic. Adv Cancer Res 69, 135–74 (1996).

    Article  PubMed  CAS  Google Scholar 

  3. Hanahan, D. & Folkman, J. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 86, 353–64 (1996).

    Article  PubMed  CAS  Google Scholar 

  4. Polverini, P. J. The pathophysiology of angiogenesis. Crit Rev Oral Biol Med 6, 230–47 (1995).

    Article  PubMed  CAS  Google Scholar 

  5. Jimenez, B. & Volpert, O. V. Mechanistic insights on the inhibition of tumor angiogenesis. J Mol Med 78, 663–72 (2001).

    Article  PubMed  CAS  Google Scholar 

  6. Adams, J. C. & Lawler, J. The thrombospondins. Int J Biochem Cell Biol 36, 961–8 (2004).

    Article  PubMed  CAS  Google Scholar 

  7. Tombran-Tink, J. & Barnstable, C. J. PEDF: a multifaceted neurotrophic factor. Nat Rev Neurosci 4, 628–36 (2003).

    Article  PubMed  CAS  Google Scholar 

  8. O'Reilly, M. S. et al. Angiostatin: a novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma. Cell 79, 315–28 (1994).

    Article  PubMed  Google Scholar 

  9. O'Reilly, M. S., Holmgren, L., Chen, C. & Folkman, J. Angiostatin induces and sustains dormancy of human primary tumors in mice. Nat Med 2, 689–92 (1996).

    Article  PubMed  Google Scholar 

  10. Sottrup-Jensen, L. Claeys, H. Zajdel, M., Petersen, T.E., Magnusson, S. in Progress in Chemical Fibrinolysis and Thrombolysis (ed. Davidson, J. F., Rowan, RIMI, Samama, M.M., Desnoyers, P.C.) 191–209 (Raven Press, New York, 1978).

    Google Scholar 

  11. Claesson-Welsh, L. et al. Angiostatin induces endothelial cell apoptosis and activation of focal adhesion kinase independently of the integrin-binding motif RGD. Proc Natl Acad Sci USA 95, 5579–83 (1998).

    Article  PubMed  CAS  Google Scholar 

  12. Holmgren, L., O'Reilly, M. S. & Folkman, J. Dormancy of micrometastases: balanced proliferation and apoptosis in the presence of angiogenesis suppression. Nat Med 1, 149–53 (1995).

    Article  PubMed  CAS  Google Scholar 

  13. Wu, Z., O'Reilly, M. S., Folkman, J. & Shing, Y. Suppression of tumor growth with recombinant murine angiostatin. Biochem Biophys Res Commun 236, 651–4 (1997).

    Article  PubMed  CAS  Google Scholar 

  14. Cao, Y. et al. Expression of angiostatin cDNA in a murine fibrosarcoma suppresses primary tumor growth and produces long-term dormancy of metastases [published erratum appears in J Clin Invest 1998 Dec 1;102(11):2031]. J Clin Invest 101, 1055–63 (1998).

    PubMed  CAS  Google Scholar 

  15. Gately, S. et al. Human prostate carcinoma cells express enzymatic activity that converts human plasminogen to the angiogenesis inhibitor, angiostatin. Cancer Res 56, 4887–90 (1996).

    PubMed  CAS  Google Scholar 

  16. Moser, T. L. et al. Angiostatin binds ATP synthase on the surface of human endothelial cells. Proc Natl Acad Sci USA 96, 2811–6 (1999).

    Article  PubMed  CAS  Google Scholar 

  17. Wahl, M. L., Owen, C. S. & Grant, D. S. Angiostatin induces intracellular acidosis and anoikis in endothelial cells at a tumor-like low pH. Endothelium 9, 205–16 (2002).

    Article  PubMed  CAS  Google Scholar 

  18. Eriksson, K., Magnusson, P., Dixelius, J., Claesson-Welsh, L. & Cross, M. J. Angiostatin and endostatin inhibit endothelial cell migration in response to FGF and VEGF without interfering with specific intracellular signal transduction pathways. FEBS Lett 536, 19–24 (2003).

    Article  PubMed  CAS  Google Scholar 

  19. Hajitou, A. et al. The antitumoral effect of endostatin and angiostatin is associated with a down-regulation of vascular endothelial growth factor expression in tumor cells. Faseb J 16, 1802–4 (2002).

    PubMed  CAS  Google Scholar 

  20. Lannutti, B. J., Gately, S. T., Quevedo, M. E., Soff, G. A. & Paller, A. S. Human angiostatin inhibits murine hemangioendothelioma tumor growth in vivo. Cancer Res 57, 5277–80 (1997).

    PubMed  CAS  Google Scholar 

  21. Kirsch, M. et al. Angiostatin suppresses malignant glioma growth in vivo. Cancer Res 58, 4654–9 (1998).

    PubMed  CAS  Google Scholar 

  22. Tanaka, T., Cao, Y., Folkman, J. & Fine, H. A. Viral vectortargeted antiangiogenic gene therapy utilizing an angiostatin complementary DNA. Cancer Res 58, 3362–9 (1998).

    PubMed  CAS  Google Scholar 

  23. Ishikawa, H. et al. Antiangiogenic gene therapy for hepatocellular carcinoma using angiostatin gene. Hepatology 37, 696–704 (2003).

    Article  PubMed  CAS  Google Scholar 

  24. Schmitz, V. et al. Treatment of colorectal and hepatocellular carcinomas by adenoviral mediated gene transfer of endostatin and angiostatin-like molecule in mice. Gut 53, 561–7 (2004).

    Article  PubMed  CAS  Google Scholar 

  25. Tao, K. S., Dou, K. F. & Wu, X. A. Expression of angiostatin cDNA in human hepatocellular carcinoma cell line SMMC-7721 and its effect on implanted carcinoma in nude mice. World J Gastroenterol 10, 1421–4 (2004).

    PubMed  CAS  Google Scholar 

  26. Lalani, A. S. et al. Anti-tumor efficacy of human angiostatin using liver-mediated adenoassociated virus gene therapy. Mol Ther 9, 56–66 (2004).

    Article  PubMed  CAS  Google Scholar 

  27. You, W. K. et al. Characterization and biological activities of recombinant human plasminogen kringle 1–3 produced in Escherichia coli. Protein Expr Purif 36, 1–10 (2004).

    Article  PubMed  CAS  Google Scholar 

  28. Yokoyama, Y., Dhanabal, M., Griffloen, A. W., Sukhatme, V. P. & Ramakrishnan, S. Synergy between angiostatin and endostatin: inhibition of ovarian cancer growth. Cancer Res 60, 2190–6 (2000).

    PubMed  CAS  Google Scholar 

  29. Griscelli, F. et al. Angiostatin gene transfer: inhibition of tumor growth in vivo by blockage of endothelial cell proliferation associated with a mitosis arrest. Proc Natl Acad Sci U S A 95, 6367–72 (1998).

    Article  PubMed  CAS  Google Scholar 

  30. Chen, Q. R., Kumar, D., Stass, S. A. & Mixson, A. J. Liposomes completed to plasmids encoding angiostatin and endostatin inhibit breast cancer in nude mice. Cancer Res 59, 3308–12 (1999).

    PubMed  CAS  Google Scholar 

  31. Gabison, E. et al. Anti-angiogenic role of angiostatin during corneal wound healing. Exp Eye Res 78, 579–89 (2004).

    Article  PubMed  CAS  Google Scholar 

  32. Kim, J. M. et al. Angiostatin gene transfer as an effective treatment strategy in marine collagen-induced arthritis. Arthritis Rheum 46, 793–801 (2002).

    Article  PubMed  CAS  Google Scholar 

  33. Sumariwalla, P. F., Cao, Y., Wu, H. L., Feldmann, M. & Paleolog, E. M. The angiogenesis inhibitor protease-activated kringles 1–5 reduces the severity of murine collagen-induced arthritis. Arthritis Res Ther 5, R32–9 (2003).

    Article  PubMed  CAS  Google Scholar 

  34. Dabrosin, C., Gyorffy, S., Margetts, P., Ross, C. & Gauldie, J. Therapeutic effect of angiostatin gene transfer in a murine model of endometriosis. Am J Pathol 161, 909–18 (2002).

    PubMed  CAS  Google Scholar 

  35. Bachman, F. in Hemostasis and Thrombosis. Basic Principles and Clinical Practice (ed. Colman, R. W., Hirsh, J., Marder, V.J., Clowes, A.W., George, J.N.) 275–320 (Lippincott, Williams, and Wilkens, Philadelphia, 2001).

    Google Scholar 

  36. Wojtukiewicz, M. Z., Sierko, E., Klement, P. & Rak, J. The hemostatic system and angiogenesis in malignancy. Neoplasia 3, 371–84 (2001).

    Article  PubMed  CAS  Google Scholar 

  37. Kohli, M., Kaushal, V. & Mehta, P. Role of coagulation and fibrinolytic system in prostate cancer. Semin Thromb Hemost 29, 301–8 (2003).

    Article  PubMed  CAS  Google Scholar 

  38. Rijken, D. C. & Collen, D. Purification and characterization of the plasminogen activator secreted by human melanoma cells in culture. J Biol Chem 256, 7035–41 (1981).

    PubMed  CAS  Google Scholar 

  39. Neuman, T., Stephens, R. W., Salonen, E. M., Timmusk, T. & Vaheri, A. Induction of morphological differentiation of human neuroblastoma cells is accompanied by induction of tissue-type plasminogen activator. J Neurosci Res 23, 274–81 (1989).

    Article  PubMed  CAS  Google Scholar 

  40. Bizik, J., Lizonova, A., Stephens, R. W., Grofova, M. & Vaheri, A. Plasminogen activation by t-PA on the surface of human melanoma cells in the presence of alpha 2-macroglobulin secretion. Cell Regul 1, 895–905 (1990).

    PubMed  CAS  Google Scholar 

  41. Bizik, J., Stephens, R. W., Grofova, M. & Vaheri, A. Binding of tissue-type plasminogen activator to human melanoma cells. J Cell Biochem 51, 326–35 (1993).

    Article  PubMed  CAS  Google Scholar 

  42. McColl, B. K. et al. Plasmin activates the lymphangiogenic growth factors VEGF-C and VEGF-D. J Exp Med 198, 863–8 (2003).

    Article  PubMed  CAS  Google Scholar 

  43. Stack, M. S., Gately, S., Bafetti, L. M., Enghild, J. J. & Soff, G. A. Angiostatin inhibits endothelial and melanoma cellular invasion by blocking matrix-enhanced plasminogen activation. Biochem J 340, 77–84 (1999).

    Article  PubMed  CAS  Google Scholar 

  44. Tarui, T., Majumdar, M., Miles, L. A., Ruf, W. & Takada, Y. Plasmin-induced migration of endothelial cells. A potential target for the anti-angiogenic action of angiostatin. J Biol Chem 277, 33564–70 (2002).

    Article  PubMed  CAS  Google Scholar 

  45. Muracciole, X. et al. PAI-1 and EGFR expression in adult glioma tumors: toward a molecular prognostic classification. Int J Radiat Oncol Biol Phys 52, 592–8 (2002).

    Article  PubMed  CAS  Google Scholar 

  46. Hornm, L. C. et al. Clinical relevance of urokinase-type plasminogen activator and its inhibitor type 1 (PAI-1) in squamous cell carcinoma of the uterine cervix. Aust N Z J Obstet Gynaecol 42, 383–6 (2002).

    Google Scholar 

  47. Gately, S. et al. The mechanism of cancer-mediated conversion of plasminogen to the angiogenesis inhibitor angiostatin. Proc Natl Acad Sci U S A 94, 10868–72 (1997).

    Article  PubMed  CAS  Google Scholar 

  48. Wang, H. et al. Cell surface-dependent generation of angiostatin4.5. Cancer Res 64, 162–8 (2004).

    Article  PubMed  CAS  Google Scholar 

  49. Wang, H., Doll, J.A., Jiang, K., Cundiff, D.L., Soff, G.A. Differential Binding of Plasminogen and Angiostatin4.5 to Cell Surface Beta-Actin: Implications for Cancer-Mediated Angiogenesis. (submitted).

    Google Scholar 

  50. Cao, Y. et al. Kringle domains of human angiostatin. Characterization of the antiproliferative activity on endothelial cells. J Biol Chem 271, 29461–7 (1996).

    Article  PubMed  CAS  Google Scholar 

  51. Cao, Y. et al. Kringle 5 of plasminogen is a novel inhibitor of endothelial cell growth. J Biol Chem 272, 22924–8 (1997).

    Article  PubMed  CAS  Google Scholar 

  52. O'Reilly, M. S., Wiederschain, D., Stetler-Stevenson, W. G., Folkman, J. & Moses, M. A. Regulation of angiostatin production by matrix metalloproteinase-2 in a model of concomitant resistance. J Biol Chem 274, 29568–71 (1999).

    Article  PubMed  Google Scholar 

  53. Patterson, B. C. & Sang, Q. A. Angiostatin-converting enzyme activities of human matrilysin (MMP-7) and gelatinase B/type IV collagenase (MMP-9). J Biol Chem 272, 28823–5 (1997).

    Article  PubMed  CAS  Google Scholar 

  54. Cornelius, L. A. et al. Matrix metalloproteinases generate angiostatin: effects on neovascularization. J Immunol 161, 6845–52 (1998).

    PubMed  CAS  Google Scholar 

  55. Lijnen, H. R., Ugwu, F., Bini, A. & Collen, D. Generation of an angiostatin-like fragment from plasminogen by stromelysin-1 (MMP-3). Biochemistry 37, 4699–702 (1998).

    Article  PubMed  CAS  Google Scholar 

  56. Dong, Z., Kumar, R., Yang, X. & Fidler, I. J. Macrophage-derived metalloelastase is responsible for the generation of angiostatin in Lewis lung carcinoma. Cell 88, 801–10 (1997).

    Article  PubMed  CAS  Google Scholar 

  57. Jurasz, P., Alonso, D., Castro-Blanco, S., Murad, F. & Radomski, M. W. Generation and role of angiostatin in human platelets. Blood 102, 3217–23 (2003).

    Article  PubMed  CAS  Google Scholar 

  58. Falcone, D. J., Khan, K. M., Layne, T. & Fernandes, L. Macrophage formation of angiostatin during inflammation. A byproduct of the activation of plasminogen. J Biol Chem 273, 31480–5 (1998).

    Article  PubMed  CAS  Google Scholar 

  59. Heidtmann, H. H. et al. Generation of angiostatin-like fragments from plasminogen by prostate-specific antigen. Br J Cancer 81, 1269–73 (1999).

    Article  PubMed  CAS  Google Scholar 

  60. Morikawa, W. et al. Angiostatin generation by cathepsin D secreted by human prostate carcinoma cells. J Biol Chem 275, 38912–20 (2000).

    Article  PubMed  CAS  Google Scholar 

  61. Li, F. et al. Human glioma cell BT325 expresses a proteinase that converts human plasminogen to kringle 1–5-containing fragments. Biochem Biophys Res Commun 278, 821–5 (2000).

    Article  PubMed  CAS  Google Scholar 

  62. Aggarwal, A., Munoz-Najar, U., Klueh, U., Shih, S. C. & Claffey, K. P. N-acetyl-cysteine promotes angiostatin production and vascular collapse in an orthotopic model of breast cancer. Am J Pathol 164, 1683–96 (2004).

    Google Scholar 

  63. Soff, G. A. Angiostatin and angiostatin-related proteins. Cancer Metastasis Rev 19, 97–107 (2000).

    Article  PubMed  CAS  Google Scholar 

  64. Westphal, J. R. et al. Angiostatin generation by human tumor cell lines: involvement of plasminogen activators. Int J Cancer 86, 760–7 (2000).

    Article  PubMed  CAS  Google Scholar 

  65. Soff, G. A. et al. Expression of plasminogen activator inhibitor type 1 by human prostate carcinoma cells inhibits primary tumor growth, tumor-associated angiogenesis, and metastasis to lung and liver in an athymic mouse model. J Clin Invest 96, 2593–600 (1995).

    PubMed  CAS  Google Scholar 

  66. Chen, C., Parangi, S., Tolentino, M. J. & Folkman, J. A strategy to discover circulating angiogenesis inhibitors generated by human tumors. Cancer Res 55, 4230–3 (1995).

    PubMed  CAS  Google Scholar 

  67. Stathakis, P. et al. Angiostatin formation involves disulfide bond reduction and proteolysis in kringle 5 of plasmin. J Biol Chem 274, 8910–6 (1999).

    Article  PubMed  CAS  Google Scholar 

  68. Stathakis, P., Fitzgerald, M., Matthias, L. J., Chesterman, C. N. & Hogg, P. J. Generation of angiostatin by reduction and proteolysis of plasmin. Catalysis by a plasmin reductase secreted by cultured cells. J Biol Chem 272, 20641–5 (1997).

    Article  PubMed  CAS  Google Scholar 

  69. Lay, A. J. et al. Phosphoglycerate kinase acts in tumour angiogenesis as a disulphide reductase. Nature 408, 869–73 (2000).

    Article  PubMed  CAS  Google Scholar 

  70. Soff, G. A. et al. Angiostatin4.5: A Naturally occurring human angiogenesis inhibitor. Proc Am Assoc Canc Res 40, #4088 (1999).

    Google Scholar 

  71. O'Mahony, C. A. et al. Angiostatin generation by human pancreatic cancer. J Surg Res 77, 55–8 (1998).

    Article  PubMed  Google Scholar 

  72. Cao, R. et al. Suppression of angiogenesis and tumor growth by the inhibitor K1-5 generated by plasmin-mediated proteolysis. Proc Natl Acad Sci USA 96, 5728–33 (1999).

    Article  PubMed  CAS  Google Scholar 

  73. Scapini, P. et al. Generation of biologically active angiostatin kringle 1–3 by activated human neutrophils. Jlmmunol 168, 5798–804 (2002).

    CAS  Google Scholar 

  74. Novokhatny, V. V., Kudinov, S. A. & Privalov, P. L. Domains in human plasminogen. J Mol Biol 179, 215–32 (1984).

    Article  PubMed  CAS  Google Scholar 

  75. Lijnen, H. R., Van Hoef, B., Ugwu, F., Collen, D. & Roelants, I. Specific proteolysis of human plasminogen by a 24 kDa endopeptidase from a novel Chryseobacterium Sp. Biochemistry 39, 479–88 (2000).

    Article  PubMed  CAS  Google Scholar 

  76. Lerch, P. G., Rickli, E. E., Lergier, W. & Gillessen, D. Localization of individual lysinebinding regions in human plasminogen and investigations on their complex-forming properties. Eur J Biochem 107, 7–13 (1980).

    Article  PubMed  CAS  Google Scholar 

  77. Motta, A., Laursen, R. A., Llinas, M., Tulinsky, A. & Park, C. H. Complete assignment of the aromatic proton magnetic resonance spectrum of the kringle 1 domain from human plasminogen: structure of the ligand-binding site. Biochemistry 26, 3827–36 (1987).

    Article  PubMed  CAS  Google Scholar 

  78. Cao, Y., Cao, R. & Veitonmaki, N. Kringle structures and antiangiogenesis. Curr Med Chem Anti-Canc Agents 2, 667–81 (2002).

    Article  CAS  Google Scholar 

  79. Geiger, J. H. & Cnudde, S. E. What the structure of angiostatin may tell us about its mechanism of action. J Thromb Haemost 2, 23–34 (2004).

    Article  PubMed  CAS  Google Scholar 

  80. Ji, W. R. et al. Characterization of kringle domains of angiostatin as antagonists of endothelial cell migration, an important process in angiogenesis. Faseb J 12, 1731–8 (1998).

    PubMed  CAS  Google Scholar 

  81. O'Reilly, M. S. Angiostatin: an endogenous inhibitor of angiogenesis and of tumor growth. Exs 79, 273–94 (1997).

    PubMed  Google Scholar 

  82. Kim, J. H. et al. The inhibitory effects of recombinant plasminogen kringle 1–3 on the neovascularization of rabbit cornea induced by angiogenin, bFGF, and VEGF. Exp Mol Med 31, 203–9 (1999).

    PubMed  CAS  Google Scholar 

  83. Cao, Y. Therapeutic potentials of angiostatin in the treatment of cancer. Haematologica 84, 643–50 (1999).

    PubMed  CAS  Google Scholar 

  84. Lee, T. H., Rhim, T. & Kim, S. S. Prothrombin kringle-2 domain has a growth inhibitory activity against basic fibroblast growth factor-stimulated capillary endothelial cells. J Biol Chem 273, 28805–12 (1998).

    Article  PubMed  CAS  Google Scholar 

  85. Schulter, V. et al. Impact of apolipoprotein(a) on in vitro angiogenesis. Arterioscler Thromb Vasc Biol 21, 433–8 (2001).

    PubMed  CAS  Google Scholar 

  86. Xin, L., Xu, R., Zhang, Q., Li, T. P. & Gan, R. B. Kringle 1 of human hepatocyte growth factor inhibits bovine aortic endothelial cell proliferation stimulated by basic fibroblast growth factor and causes cell apoptosis. Biochem Biophys Res Commun 277, 186–90 (2000).

    Article  PubMed  CAS  Google Scholar 

  87. Sheppard, G. S. et al. Lysyl 4-aminobenzoic acid derivatives as potent small molecule mimetics of plasminogen kringle 5. Bioorg Med Chem Lett 14, 965–6 (2004).

    Article  PubMed  CAS  Google Scholar 

  88. Dettin, M. et al. Synthetic peptides derived from the angiostatin K4 domain inhibit endothelial cell migration. Chembiochem 4, 1238–42 (2003).

    Article  PubMed  CAS  Google Scholar 

  89. O'Reilly, M. S., Pirie-Shepherd, S., Lane, W. S. & Folkman, J. Antiangiogenic activity of the cleaved conformation of the serpin antithrombin. Science 285, 1926–8 (1999).

    Article  PubMed  Google Scholar 

  90. Staton, C. A. et al. Alphastatin, a 24-amino acid fragment of human fibrinogen, is a potent new inhibitor of activated endothelial cells in vitro and in vivo. Blood 103, 601–6 (2004).

    Article  PubMed  CAS  Google Scholar 

  91. Celerier, J., Cruz, A., Lamande, N., Gasc, J. M. & Corvol, P. Angiotensinogen and its cleaved derivatives inhibit angiogenesis. Hypertension 39, 224–8 (2002).

    Article  PubMed  CAS  Google Scholar 

  92. Colorado, P. C. et al. Anti-angiogenic cues from vascular basement membrane collagen. Cancer Res 60, 2520–6 (2000).

    PubMed  CAS  Google Scholar 

  93. Kamphaus, G. D. et al. Canstatin, a novel matrix-derived inhibitor of angiogenesis and tumor growth. J Biol Chem 275, 1209–15 (2000).

    Article  PubMed  CAS  Google Scholar 

  94. O'Reilly, M. S. et al. Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell 88, 277–85 (1997).

    Article  PubMed  Google Scholar 

  95. Wen, W., Moses, M. A., Wiederschain, D., Arbiser, J. L. & Folkman, J. The generation of endostatin is mediated by elastase. Cancer Res 59, 6052–6 (1999).

    PubMed  CAS  Google Scholar 

  96. Kim, Y. M. et al. Endostatin inhibits endothelial and tumor cellular invasion by blocking the activation and catalytic activity of matrix metalloproteinase. Cancer Res 60, 5410–3 (2000).

    PubMed  CAS  Google Scholar 

  97. Lee, S. J. et al. Endostatin binds to the catalytic domain of matrix metalloproteinase-2. FEBSLett 519, 147–52 (2002).

    Article  CAS  Google Scholar 

  98. Bootle-Wilbraham, C. A., Tazzyman, S., Marshall, J. M. & Lewis, C. E. Fibrinogen E-fragment inhibits the migration and tubule formation of human dermal microvascular endothelial cells in vitro. Cancer Res 60, 4719–24 (2000).

    PubMed  CAS  Google Scholar 

  99. Colman, R. W., Jameson, B. A., Lin, Y., Johnson, D. & Mousa, S. A. Domain 5 of high molecular weight kininogen (kininostatin) down-regulates endothelial cell proliferation and migration and inhibits angiogenesis. Blood 95, 543–50 (2000).

    PubMed  CAS  Google Scholar 

  100. Bello, L. et al. Simultaneous inhibition of glioma angiogenesis, cell proliferation, and invasion by a naturally occurring fragment of human metalloproteinase-2. Cancer Res 61, 8730–6 (2001).

    PubMed  CAS  Google Scholar 

  101. Ferrara, N., Clapp, C. & Weiner, R. The 16K fragment of prolactin specifically inhibits basal or fibroblast growth factor stimulated growth of capillary endothelial cells. Endocrinology 129, 896–900 (1991).

    Article  PubMed  CAS  Google Scholar 

  102. Ramchandran, R. et al. Antiangiogenic activity of restin, NC10 domain of human collagen XV: comparison to endostatin. Biochem Biophys Res Commun 255, 735–9 (1999).

    Article  PubMed  CAS  Google Scholar 

  103. Maeshima, Y. et al. Identification of the anti-angiogenic site within vascular basement membrane-derived tumstatin. J Biol Chem 276, 15240–8 (2001).

    Article  PubMed  CAS  Google Scholar 

  104. Maeshima, Y. et al. Tumstatin, an endothelial cell-specific inhibitor of protein synthesis. Science 295, 140–3 (2002).

    Article  PubMed  CAS  Google Scholar 

  105. Sudhakar, A. et al. Human tumstatin and human endostatin exhibit distinct antiangiogenic activities mediated by alpha v beta 3 and alpha 5 beta 1 integrins. Proc Natl Acad Sci U S A 100, 4766–71 (2003).

    Article  PubMed  CAS  Google Scholar 

  106. Pike, S. E. et al. Vasostatin, a calreticulin fragment, inhibits angiogenesis and suppresses tumor growth. J Exp Med 188, 2349–56 (1998).

    Article  PubMed  CAS  Google Scholar 

  107. Pike, S. E. et al. Calreticulin and calreticulin fragments are endothelial cell inhibitors that suppress tumor growth. Blood 94, 2461–8 (1999).

    PubMed  CAS  Google Scholar 

  108. Walter, J. J. & Sane, D. C. Angiostatin binds to smooth muscle cells in the coronary artery and inhibits smooth muscle cell proliferation and migration In vitro. Arterioscler Thromb Vase Biol 19, 2041–8 (1999).

    CAS  Google Scholar 

  109. Benelli, R. et al. Neutrophils as a key cellular target for angiostatin: implications for regulation of angiogenesis and inflammation. Faseb J 16, 267–9 (2002).

    PubMed  CAS  Google Scholar 

  110. Benelli, R., Morini, M., Brigati, C., Noonan, D. M. & Albini, A. Angiostatin inhibits extracellular HIV-Tat-induced inflammatory angiogenesis. Int J Oncol 22, 87–91 (2003).

    PubMed  CAS  Google Scholar 

  111. Peyruchaud, O., Serre, C. M., NicAmhlaoibh, R., Foumier, P. & Clezardin, P. Angiostatin inhibits bone metastasis formation in nude mice through a direct anti-osteoclastic activity. J Biol Chem 278, 45826–32 (2003).

    Article  PubMed  CAS  Google Scholar 

  112. Wajih, N. & Sane, D. C. Angiostatin selectively inhibits signaling by hepatocyte growth factor in endothelial and smooth muscle cells. Blood 101, 1857–63 (2003).

    Article  PubMed  CAS  Google Scholar 

  113. Redlitz, A., Daum, G. & Sage, E. H. Angiostatin diminishes activation of the mitogen-activated protein kinases ERK-1 and ERK-2 in human dermal microvascular endothelial cells. J Vase Res 36, 28–34 (1999).

    Article  CAS  Google Scholar 

  114. Gao, G. et al. Down-regulation of vascular endothelial growth factor and up-regulation of pigment epithelium-derived factor: a possible mechanism for the anti-angiogenic activity of plasminogen kringle 5. J Biol Chem 277, 9492–7 (2002).

    Article  PubMed  CAS  Google Scholar 

  115. Lucas, R. et al. Multiple forms of angiostatin induce apoptosis in endothelial cells. Blood 92, 4730–41 (1998).

    PubMed  CAS  Google Scholar 

  116. Lu, H. et al. Kringle 5 causes cell cycle arrest and apoptosis of endothelial cells. Biochem Biophys Res Commun 258, 668–73 (1999).

    Article  PubMed  CAS  Google Scholar 

  117. Hanford, H. A. et al. Angiostatin(4.5)-mediated apoptosis of vascular endothelial cells. Cancer Res 63, 4275–80 (2003).

    PubMed  CAS  Google Scholar 

  118. Das, B., Mondragon, M. O., Sadeghian, M., Hatcher, V. B. & Norin, A. J. A novel ligand in lymphocyte-mediated cytotoxicity: expression of the beta subunit of H+ transporting ATP synthase on the surface of tumor cell lines. J Exp Med 180, 273–81 (1994).

    Article  PubMed  CAS  Google Scholar 

  119. Veitonmaki, N. et al. Endothelial cell surface ATP synthase-triggered caspase-apoptotic pathway is essential for kl-5-induced antiangiogenesis. Cancer Res 64, 3679–86 (2004).

    Article  PubMed  Google Scholar 

  120. Wahl, M. L., Moser, T. L. & Pizzo, S. V. Angiostatin and anti-angiogenic therapy in human disease. Recent Prog Horm Res 59, 73–104 (2004).

    Article  PubMed  CAS  Google Scholar 

  121. Chen, Y. H. et al. Angiostatin antagonizes the action of VEGF-A in human endothelial cells via two distinct pathways. Biochem Biophys Res Commun 310, 804–10 (2003).

    Article  PubMed  CAS  Google Scholar 

  122. Gupta, N. et al. Angiostatin effects on endothelial cells mediated by ceramide and RhoA. EMBO Rep 2, 536–40 (2001).

    PubMed  CAS  Google Scholar 

  123. Sharma, M. R., Tuszynski, G. P. & Sharma, M. C. Angiostatin-induced inhibition of endothelial cell proliferation/apoptosis is associated with the down-regulation of cell cycle regulatory protein cdk5. J Cell Biochem 91, 398–409 (2004).

    Article  PubMed  CAS  Google Scholar 

  124. Tarui, T., Miles, L. A. & Takada, Y. Specific interaction of angiostatin with integrin alpha(v)beta(3) in endothelial cells. J Biol Chem 276, 39562–8 (2001).

    Article  PubMed  CAS  Google Scholar 

  125. Troyanovsky, B., Levchenko, T., Mansson, G., Matvijenko, O. & Holmgren, L. Angiomotin: an angiostatin binding protein that regulates endothelial cell migration and tube formation. J Cell Biol 152, 1247–54 (2001).

    Article  PubMed  CAS  Google Scholar 

  126. Levchenko, T., Bratt, A., Arbiser, J. L. & Holmgren, L. Angiomotin expression promotes hemangioendothelioma invasion. Oncogene 23, 1469–73 (2004).

    Article  PubMed  CAS  Google Scholar 

  127. Tuszynski, G. P., Sharma, M. R., Rothman, V. L. & Sharma, M. C. Angiostatin binds to tyrosine kinase substrate annexin II through the lysine-binding domain in endothelial cells. Microvasc Res 64, 448–62 (2002).

    Article  PubMed  CAS  Google Scholar 

  128. Richardson, M. et al. Malignant ascites fluid (MAF), including ovarian-cancer-associated MAF, contains angiostatin and other factorss, which inhibit angiogenesis. Gynecol Oncol 86, 279–87 (2002).

    Article  PubMed  CAS  Google Scholar 

  129. Sten-Linder, M. et al. Angiostatin fragments in urine from patients with malignant disease. Anticancer Res 19, 3409–14 (1999).

    PubMed  CAS  Google Scholar 

  130. Cao, Y. et al. Elevated levels of urine angiostatin and plasminogen/plasmin in cancer patients. Int J Mol Med 5, 547–51 (2000).

    PubMed  CAS  Google Scholar 

  131. Sack, R. A., Beaton, A. R. & Sathe, S. Diurnal variations in angiostatin in human tear fluid: a possible role in prevention of corneal neovascularization. Curr Eye Res 18, 186–93 (1999).

    Article  PubMed  CAS  Google Scholar 

  132. Teicher, B. A., Sotomayor, E. A. & Huang, Z. D. Antiangiogenic agents potentiate cytotoxic cancer therapies against primary and metastatic disease. Cancer Res 52, 6702–4 (1992).

    PubMed  CAS  Google Scholar 

  133. Teicher, B. A., Holden, S. A., Ara, G. & Northey, D. Response of the FSaII fibrosarcoma to antiangiogenic modulators plus cytotoxic agents. Anticancer Res. 13, 2101–6 (1993).

    PubMed  CAS  Google Scholar 

  134. Teicher, B. A. et al. Potentiation of cytotoxic cancer therapies by TNP-470 alone and with other anti-angiogenic agents. Int J Cancer 57, 920–5 (1994).

    PubMed  CAS  Google Scholar 

  135. Teicher, B. A., Holden, S. A., Ara, G., Korbut, T. & Menon, K. Comparison of several antiangiogenic regimens alone and with cytotoxic therapies in the Lewis lung carcinoma. Cancer Chemother Pharmacol 38, 169–77 (1996).

    Article  PubMed  CAS  Google Scholar 

  136. Wilczynska, U., Kucharska, A., Szary, J. & Szala, S. Combined delivery of an antiangiogenic protein (angiostatin) and an immunomodulatory gene (interleukin-12) in the treatment of murine cancer. Acta Biochim Pol 48, 1077–84 (2001).

    PubMed  CAS  Google Scholar 

  137. Kerbel, R. S. A cancer therapy resistant to resistance. Nature 390, 335–6 (1997).

    Article  PubMed  CAS  Google Scholar 

  138. Boehm, T., Folkman, J., Browder, T. & O'Reilly, M. S. Antiangiogenic therapy of experimental cancer does not induce acquired drug resistance. Nature 390, 404–7 (1997).

    Article  PubMed  CAS  Google Scholar 

  139. Folkman, J. Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med 1, 27–31 (1995).

    Article  PubMed  CAS  Google Scholar 

  140. Eskens, F. A. Angiogenesis inhibitors in clinical development; where are we now and where are we going? Br J Cancer 90, 1–7 (2004).

    Article  PubMed  CAS  Google Scholar 

  141. Mauceri, H. J. et al. Combined effects of angiostatin and ionizing radiation in antitumor therapy. Nature 394, 287–91 (1998).

    Article  PubMed  CAS  Google Scholar 

  142. Gorski, D. H. et al. Potentiation of the antitumor effect of ionizing radiation by brief concomitant exposures to angiostatin. Cancer Res 58, 5686–9 (1998).

    PubMed  CAS  Google Scholar 

  143. Mauceri, H. J. et al. Angiostatin potentiates cyclophosphamide treatment of metastatic disease. Cancer Chemother Pharmacol 50, 412–8 (2002).

    Article  PubMed  CAS  Google Scholar 

  144. Galaup, A. et al. Combined effects of docetaxel and angiostatin gene therapy in prostate tumor model. Mol Ther 7, 731–40 (2003).

    Article  PubMed  CAS  Google Scholar 

  145. Hanahan, D., Bergers, G. & Bergsland, E. Less is more, regularly: metronomic dosing of cytotoxic drugs can target tumor angiogenesis in mice. J Clin Invest 105, 1045–7 (2000).

    PubMed  CAS  Google Scholar 

  146. Vacca, A. et al. Antiangiogenesis is produced by nontoxic doses of vinblastine. Blood 94, 4143–55 (1999).

    PubMed  CAS  Google Scholar 

  147. Klement, G. et al. Continuous low-dose therapy with vinblastine and VEGF receptor-2 antibody induces sustained tumor regression without overt toxicity. J Clin Invest 105, R15–24 (2000).

    Article  PubMed  CAS  Google Scholar 

  148. Browder, T. et al. Antiangiogenic scheduling of chemotherapy improves efficacy against experimental drug-resistant cancer. Cancer Res 60, 1878–86 (2000).

    PubMed  CAS  Google Scholar 

  149. Gately, S. & Kerbel, R. Antiangiogenic scheduling of lower dose cancer chemotherapy. Cancer J 7, 427–36 (2001).

    PubMed  CAS  Google Scholar 

  150. Sim, B. K. et al. A recombinant human angiostatin protein inhibits experimental primary and metastatic cancer. Cancer Res 57, 1329–34 (1997).

    PubMed  CAS  Google Scholar 

  151. MacDonald, N. J., Murad, A. C., Fogler, W. E., Lu, Y. & Sim, B. K. The tumor-suppressing activity of angiostatin protein resides within kringles 1 to 3. Biochem Biophys Res Commun 264, 469–77 (1999).

    Article  PubMed  CAS  Google Scholar 

  152. Meneses, P. I. et al. Simplified production of a recombinant human angiostatin derivative that suppresses intracerebral glial tumor growth. Clin Cancer Res 5, 3689–94 (1999).

    PubMed  CAS  Google Scholar 

  153. Beerepoot, L. V. et al. Recombinant human angiostatin by twice-daily subcutaneous injection in advanced cancer: a pharmacokinetic and long-term safety study. Clin Cancer Res 9, 4025–33 (2003).

    PubMed  CAS  Google Scholar 

  154. Nguyen, J. T., Wu, P., Clouse, M. E., Hlatky, L. & Terwilliger, E. F. Adeno-associated virus-mediated delivery of antiangiogenic factors as an antitumor strategy. Cancer Res 58, 5673–7 (1998).

    PubMed  CAS  Google Scholar 

  155. Ambs, S., Dennis, S., Fairman, J., Wright, M. & Papkoff, J. Inhibition of tumor growth correlates with the expression level of a human angiostatin transgene in transfected B16F10 melanoma cells. Cancer Res 59, 5773–7 (1999).

    PubMed  CAS  Google Scholar 

  156. Volpert, O. V. et al. Captopril inhibits angiogenesis and slows the growth of experimental tumors in rats. J Clin Invest 98, 671–9 (1996).

    PubMed  CAS  Google Scholar 

  157. Vogt, B. & Frey, F. J. Inhibition of angiogenesis in Kaposi's sarcoma by captopril. Lancet 349, 1148 (1997).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Doll, J.A., Soff, G.A. (2005). Angiostatin. In: Platanias, L.C. (eds) Cytokines and Cancer. Cancer Treatment and Research, vol 126. Springer, Boston, MA. https://doi.org/10.1007/0-387-24361-5_8

Download citation

  • DOI: https://doi.org/10.1007/0-387-24361-5_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-24360-3

  • Online ISBN: 978-0-387-24361-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics