Skip to main content

Part of the book series: Protein Reviews ((PRON,volume 3))

Abstract

A critical review of published methodology used in docking proteins and of current understanding of the problems associated with the inherent flexibility of proteins is presented. The underlying assumption made in the past of docking two rigid bodies (six degrees of freedom) is clearly not applicable to most protein-protein interactions as induced fit is the rule rather than the exception. Nevertheless, significant progress is being made as investigators increase flexibility of the docking partners with the availability of increased computational power. In the extreme case, however, docking of two proteins is equivalent to predicting the structure of the complex from the two sequences alone.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abagyan, R., and Totrov, M. (2001). High-throughput docking for lead generation. Curr. Opin. Chem. Biol. 5:375–382.

    PubMed  CAS  Google Scholar 

  • Ackermann, F., G. Herrmann, F. Kummert, S. Posch, G. Sagerer, and D. Schromburg. (1995). Protein docking combining symbolic descriptions of molecular surfaces and grid-based scoring functions. In: Rawlings, C., Clark, D., Altmanet, R. (eds), Intelligent Systems for Molecular Biology. Menlo Park, CA, AAAI Press, pp. 3–11.

    Google Scholar 

  • Aebersold, R., and Mann, M. (2003). Mass spectrometry-based proteomics. Nature 422:198–207.

    PubMed  CAS  Google Scholar 

  • Aloy, P., G. Moont, H.A. Gabb, E. Querol, F.X. Aviles, and M.J.E. Sternberg. (1998). Modelling repressor proteins docking to DNA. Proteins 33:535–549.

    PubMed  CAS  Google Scholar 

  • Ausiello, G., G. Cesareni, and M. Helmer-Citterich. (1997). ESCHER: a new docking procedure applied to the reconstruction of protein tertiary structure. Proteins 28:556–567.

    PubMed  CAS  Google Scholar 

  • Babu, Y.S., C.E. Bugg, and W.J. Cook. (1988). Structure of calmodulin refined at 2.2 A resolution. J. Mol. Biol. 204:191–204.

    PubMed  CAS  Google Scholar 

  • Bajorath, J. (2002). Integration of virtual and high-throughput screening. Nat. Rev. Drug Discov. 1:882–894.

    PubMed  CAS  Google Scholar 

  • Baker, D., and Lim, W.A. (2002). Folding and binding. From folding towards function. Curr. Opin. Struct. Biol. 12:11–13.

    CAS  Google Scholar 

  • Bartoli, S., and Roelens, S. (2002). Binding of acetylcholine and tetramethylammonium to a cyclophane receptor: anion’s contribution to the cation-pi interaction. J. Am. Chem. Soc. 124:8307–8315.

    PubMed  CAS  Google Scholar 

  • Berg, O.G., and von Hippel, P.H. (1985). Diffusion-controlled macromolecular interactions. Annu. Rev. Biophys. Biophys. Chem. 14:131–160.

    PubMed  CAS  Google Scholar 

  • Berg, T. (2003). Modulation of protein-protein interactions with small organic molecules. Angew Chem. Int. Ed. Engl. 42:2462–2481.

    PubMed  CAS  Google Scholar 

  • Berglund, A., R.D. Head, E. Welsh, and G.R. Marshall. (2004). ProVal: a protein scoring function for the selection of native and near-native folds. Proteins Struct. Funct. Bioinform. 54:289–302.

    CAS  Google Scholar 

  • Bliznyuk, A.A., and Gready, J.E. (1999). Simple method for locating possible ligand binding sites on protein surfaces. J. Comput. Chem. 20:983–988.

    CAS  Google Scholar 

  • Blom, N.S., and Sygusch, J. (1997). High resolution fast quantitative docking using fourier domain correlation techniques. Proteins 27:493–506.

    PubMed  CAS  Google Scholar 

  • Bogan, A.A., and Thorn, K.S. (1998). Anatomy of hot spots in protein interfaces. J. Mol. Biol. 280:1–9.

    PubMed  CAS  Google Scholar 

  • Bouzida, D., P.A. Rejto, and G.M. Verkhivker. (1999). Monte Carlo simulations of ligand-protein binding energy landscapes with the weighted histogram analysis method. Int. J. Quantum Chem. 73:113–121.

    CAS  Google Scholar 

  • Bowman, M.J., and Chmielewski, J. (2002). Novel strategies for targeting the dimerization interface of HIV protease with cross-linked interfacial peptides. Biopolymers 66:126–133.

    PubMed  CAS  Google Scholar 

  • Bryngelson, J.D., J.N. Onuchic, N.D. Socci, and P.G. Wolynes. (1995). Funnels, pathways, and the energy landscape of protein folding: a synthesis. Proteins 21:167–195.

    PubMed  CAS  Google Scholar 

  • Burley, S.K. (2000). An overview of structural genomics. Nat. Struct. Biol. 7:932–934.

    PubMed  CAS  Google Scholar 

  • Camacho, C.J., Z. Weng, S. Vajda, and C. DeLisi. (1999). Free energy landscapes of encounter complexes in protein-protein association. Biophys. J. 76:1166–1178.

    PubMed  CAS  Google Scholar 

  • Camacho, C.J., D.W. Gatchell, S.R. Kimura, and S. Vajda. (2000). Scoring docked conformations generated by rigid-body protein-protein docking. Proteins 40:525–537.

    PubMed  CAS  Google Scholar 

  • Che, Y., and Marshall, G.R. (2003). A statistical-based atom-atom based potential for protein/protein complex evaluation. Ph.D. Thesis, Protein-Protein Recognition: Structure, Energetics and Drug Design, Washington University St. Louis, August, 2003.

    Google Scholar 

  • Chen, R., and Weng, Z. (2002). Docking unbound proteins using shape complementarity, desolvation, and electrostatistics. Proteins 47:281–294.

    PubMed  CAS  Google Scholar 

  • Chen, R., J. Mintseris, J. Janin, and Z. Weng. (2003). A protein-protein docking benchmark. Proteins 52:88–91.

    PubMed  CAS  Google Scholar 

  • Chene, P., J. Fuchs, J. Bohn, C. Garcia-Echeverria, P. Furet, and D. Fabbro. (2000). A small synthetic peptide, which inhibits the p53-hdm2 interaction, stimulates the p53 pathway in tumour cell lines. J. Mol. Biol. 299:245–253.

    PubMed  CAS  Google Scholar 

  • Chothia, C., M. Levitt, and D. Richardson. (1981). Helix to helix packing in proteins. J. Mol. Biol. 145:215–250.

    PubMed  CAS  Google Scholar 

  • Chrunyk, B.A., M.H. Rosner, Y. Cong, A.S. McColl, I.G. Otterness, and G.O. Daumy. (2000). Inhibiting protein-protein interactions: a model for antagonist design. Biochemistry 39:7092–7099.

    PubMed  CAS  Google Scholar 

  • Clackson, T., and Wells, J.A. (1995). A hot spot of binding energy in a hormone-receptor interface. Science 267:383–386.

    PubMed  CAS  Google Scholar 

  • Cohen, F.E., T.J. Richmond, and F.M. Richards. (1979). Protein folding: evaluation of some simple rules for the assembly of helices into tertiary structures with myoglobin as an example. J. Mol. Biol. 132:275–288.

    PubMed  CAS  Google Scholar 

  • Cunningham, B.C., and Wells, J.A. (1993). Comparison of a structural and a functional epitope. J. Mol. Biol. 234:554–563.

    PubMed  CAS  Google Scholar 

  • Dill, K.A. (1990). Dominant forces in protein folding. Biochemistry 29:7133–7155.

    PubMed  CAS  Google Scholar 

  • Dill, K.A. (1999). Polymer principles and protein folding. Protein Sci. 8:1166–1180.

    PubMed  CAS  Google Scholar 

  • Dixon, J.S. (1997). Evaluation of the CASP2 docking section. Proteins (Suppl. 1):198–204.

    PubMed  Google Scholar 

  • Drozdov-Tikhomirov, L.N., D.M. Linde, V.V. Poroikov, A.A. Alexandrov, and G.I. Skurida. (2001). Molecular mechanisms of protein-protein recognition: whether the surface placed charged residues determine the recognition process? J. Biomol. Struct. Dyn. 19:279–284.

    PubMed  CAS  Google Scholar 

  • Duncan, B.S., and Olson, A.J. (1993). Approximation and characterization of molecular surfaces. Biopolymers 33:219–229.

    PubMed  CAS  Google Scholar 

  • Eisenberg, D., E.M. Marcotte, I. Xenarios, and T.O. Yeates. (2000). Protein function in the post-genomic era. Nature 405:823–826.

    PubMed  CAS  Google Scholar 

  • Ewing, T.J.A., and Kuntz, I.D. (1997). Critical evaluation of search algorithms for automated molecular docking and database screening. J. Comput. Chem. 18:1175–1189.

    CAS  Google Scholar 

  • Fernandez-Recio, J., M. Totrov, and R. Abagyan. (2002). Soft protein-protein docking in internal coordinates. Protein Sci. 11:280–291.

    PubMed  CAS  Google Scholar 

  • Finn, F.M., and Hofmann, K. (1973). The S-peptide S-protein system: a model for hormone-receptor interaction. Acc. Chem. Res. 6:169–176.

    CAS  Google Scholar 

  • Fischer, D., S.L. Lin, H.L. Wolfson, and R. Nussinov. (1995). Ageometry-based suite of molecular docking processes. J. Mol. Biol. 248:459–477.

    PubMed  CAS  Google Scholar 

  • Fitzjohn, P.W., and Bates, P.A. (2003). Guided docking: first step to locate potential binding sites. Proteins 52:28–32.

    PubMed  CAS  Google Scholar 

  • Friedman, J.M. (1997). Fourier-filtered van der Waals contact surfaces: accurate ligand shaped from protein structures. Protein Eng. 10:851–863.

    PubMed  CAS  Google Scholar 

  • Gabb, H.A., R.M. Jackson, and M.J.E. Sternberg. (1997). Modelling protein docking using shape complementarity, electrostatics and biochemical information. J. Mol. Biol. 272:106–120.

    PubMed  CAS  Google Scholar 

  • Galaktionov, S., G.V. Nikiforovich, and G.R. Marshall. (2001). Ab initio modeling of small, medium, and large loops in proteins. Biopolymers 60:153–168.

    PubMed  CAS  Google Scholar 

  • Gallivan, J.P., and Dougherty, D.A. (2000). A computational study of cation-pi interactions vs. salt bridges in aqueous media: implications for protein engineering. J. Am. Chem. Soc. 122:870–874.

    CAS  Google Scholar 

  • Garcia-Echeverria, C., P. Chene, M.J. Blommers, and P. Furet. (2000). Discovery of potent antagonists of the interaction between human double minute 2 and tumor suppressor p53. J. Med. Chem. 43:3205–3208.

    PubMed  CAS  Google Scholar 

  • Gardiner, E.J., P. Willett, and P.J. Artymiuk. (2001). Protein docking using a genetic algorithm. Proteins 44:44–56.

    PubMed  CAS  Google Scholar 

  • Glaser, F., D. Steinberg, I.A. Vakser, and N. Ben-Tal. (2001). Residue frequencies and pairing preferences at protein-protein interfaces. Proteins 43:89–102.

    PubMed  CAS  Google Scholar 

  • Glen, R.C., and Allen, S.C. (2003). Ligand-protein docking: cancer research at the interface between biology and chemistry. Curr. Med. Chem. 10:763–767.

    PubMed  CAS  Google Scholar 

  • Goldsmith-Fischman, S., and Honig, B. (2003). Structural genomics: computational methods for structure analysis. Protein Sci. 12:1813–1821.

    PubMed  CAS  Google Scholar 

  • Goodford, P.J. (1984). Drug design by the method of receptor fit. J. Med. Chem. 27:557–564.

    CAS  Google Scholar 

  • Goodsell, D.S., H. Lauble, C.D. Stout, and A.J. Olson. (1993). Automated docking in crystallography: analysis of the substrates of aconitase. Proteins Struct. Funct. Genet. 17:1–10.

    PubMed  CAS  Google Scholar 

  • Gray, J.J., S. Moughon, C. Wang, O. Schueler-Furman, B. Kuhlman, C.A. Rohl, and D. Baker. (2003). Protein-protein docking with simultaneous optimization of rigid body displacement and side-chain conformations. J. Mol. Biol. 331:281–299.

    PubMed  CAS  Google Scholar 

  • Greer, J., and Bush, B.L. (1978). Macromolecular shape and surface maps by solvent exclusion. PNAS 75:303–307.

    PubMed  CAS  Google Scholar 

  • Grossfield, A., P. Ren, and J.W. Ponder. (2003). Ion solvation thermodynamics from simulation with a polarizable force field. J Am Chem Soc 125:15671–15682.

    PubMed  CAS  Google Scholar 

  • Halperin, I., B. Ma, H. Wolfson, and R. Nussinov. (2002). Principles of docking: An overview of search algorithms and a guide to scoring functions. Proteins 47:409–443.

    PubMed  CAS  Google Scholar 

  • Harrison, R.W., I.V. Kourinov, and L.C. Andrews. (1994). The Fourier-Green’s function and the rapid evaluation of molecular potentials. Protein Eng. 7:359–369.

    PubMed  CAS  Google Scholar 

  • Hart, R.K., R.V. Pappu, and J.W. Ponder. (2000). Exploring the similarities between potential smoothing and simulated annealing. J. Comput. Chem. 21:531–552.

    CAS  Google Scholar 

  • Haspel, N., C.J. Tsai, H. Wolfson, and R. Nussinov. (2002). Reducing the computational complexity of protein folding via fragment folding and assembly. Protein Sci. 12:1177–1187.

    Google Scholar 

  • Head, R.D., M.L. Smythe, T.I. Oprea, C.L. Waller, S.M. Green, and G.R. Marshall. (1996). Validate-a new method for the receptor-based prediction of binding affinities of novel ligands. J. Am. Chem. Soc. 118:3959–3969.

    CAS  Google Scholar 

  • Heifetz, A., E. Katchalski-Katzir, and M. Eisenstein. (2002). Electrostatistics in protein-protein docking. Protein Sci. 11:571–587.

    PubMed  CAS  Google Scholar 

  • Ho, C.M.W., and Marshall, G.R. (1990). Cavity search: an algorithm for the isolation and display of cavity-like binding regions. J. Comput. Aided Mol. Des. 4:337–354.

    PubMed  CAS  Google Scholar 

  • Hodgkin, E.E., J.D. Clark, K.R. Miller, and G.R. Marshall. (1990). Conformational analysis and helical preferences of normal and α, α-dialkyl amino acids. Biopolymers 30:533–546.

    CAS  Google Scholar 

  • Hu, Z., B. Ma, H. Wolfson, and R. Nussinov. (2000). Conservation of polar residues as hot spots at protein interfaces. Proteins 39:331–342.

    PubMed  CAS  Google Scholar 

  • Hubbard, S.J., and Argos, P. (1994). Cavities and packing at protein interfaces. Protein Sci. 3:2194–2206.

    PubMed  CAS  Google Scholar 

  • Inbar, Y., H. Benyamini, R. Nussinov, and H.J. Wolfson. (2003). Protein structure prediction via combinatorial assembly of substructural units. Bioinformatics 19:i158–i168.

    PubMed  Google Scholar 

  • Janin, J. (1995). Principles of protein-protein recognition from structure to thermodynamics. Biochimie 77:497–505.

    PubMed  CAS  Google Scholar 

  • Janin, J., K. Henrick, J. Moult, L. Ten Eyck, M.J.E. Sternberg, S. Vajda, I. Vakser, and S.J. Wodak. (2003). CAPRI: Acritical assessment of predicted Interactions. Proteins 52:2–9.

    PubMed  CAS  Google Scholar 

  • Jernigan, R.L., and Bahar, I. (1996). Structure-derived potentials and protein simulations. Curr. Opin. Struct. Biol. 6:195–209.

    PubMed  CAS  Google Scholar 

  • Jiang, S., and Vakser, I.A. (2000). Side chains in transmembrane helices are shorter at helix-helix interfaces. Proteins 40:429–435.

    PubMed  CAS  Google Scholar 

  • Jiang, S., and Vakser, I.A. (2004). Shorter side chains optimize helix-helix packing. Protein Sci. 13:1426–1429.

    PubMed  CAS  Google Scholar 

  • Jiang, F., and Kim, S.-H. (1991). “Soft Docking”: matching of molecular surface cubes. J. Mol. Biol. 219:79–102.

    PubMed  CAS  Google Scholar 

  • Jiang, F., W. Lin, and Z. Rao. (2002). SOFTDOCK: understanding of molecular recognition through a systematic docking study. Protein Eng. 15:257–263.

    PubMed  CAS  Google Scholar 

  • Jiang, S., A. Tovchigrechko, and I.A. Vakser. (2003). The role of geometric complementarity in secondary structure packing: a systematic docking study. Protein Sci. 12:1646–1651.

    PubMed  CAS  Google Scholar 

  • Jones, S., and Thornton, J.M. (1996). Principles of protein-protein interactions. Proc. Natl. Acad. Sci. USA 93:13–20.

    PubMed  CAS  Google Scholar 

  • Jorgensen, W.L., D.S. Maxwell, and J. Tirado-Rives. (1996). Development and testing of the OPLS allatom force field on conformational energetics and properties of organic liquids. J. Am. Chem. Soc. 118:11225–11236.

    CAS  Google Scholar 

  • Katchalski-Katzir, E., I. Shariv, M. Eisenstein, A.A. Friesem, C. Aflalo, and I.A. Vakser. (1992). Molecular surface recognition: determination of geometric fit between proteins and their ligands by correlation techniques. Proc. Natl. Acad. Sci. USA 89:2195–2199.

    PubMed  CAS  Google Scholar 

  • Keskin, O., I. Bahar, A.Y. Badretdinov, O.B. Ptitsyn, and R.L. Jernigan. (1998). Empirical solvent-mediated potentials hold for both intra-molecular and inter-molecular inter-esidue interactions. Protein Sci. 7:2578–2586.

    PubMed  CAS  Google Scholar 

  • Kim, M.K., G.S. Chirikjian, and R.L. Jernigan. (2002a). Elastic models of conformational transitions in macromolecules. J Mol Graph Model 21:151–160.

    PubMed  CAS  Google Scholar 

  • Kim, M.K., R.L. Jernigan, and G.S. Chirikjian. (2002b). Efficient generation of feasible pathways for protein conformational transitions. Biophys J 83:1620–1630.

    PubMed  CAS  Google Scholar 

  • Knegtel, R.M., and Wagener, M., (1999). Efficacy and selectivity in flexible database docking. Proteins 37:334–345.

    PubMed  CAS  Google Scholar 

  • Korn, A.P., and Burnett, R.M. (1991). Distribution and complementarity of hydropathy in multisubunit proteins. Proteins 9:37–55.

    PubMed  CAS  Google Scholar 

  • Kuntz, I.D., J.M. Blaney, S.J. Oatley, R. Langridge, and T.E. Ferrin. (1982). A geometric approach to macromolecule-ligand interactions. J. Mol. Biol. 161:269.

    PubMed  CAS  Google Scholar 

  • Kussie, P.H., S. Gorina, V. Marechal, B. Elenbaas, J. Moreau, A.J. Levine, and N.P. Pavletich. (1996). Structure of the MDM2 oncoprotein bound to the p53 tumor suppressor transactivation domain. Science 274:948–953.

    PubMed  CAS  Google Scholar 

  • Lamb, M.L., K.W. Burdick, S. Toba, M.M. Young, K.G. Skillman, X.Q. Zou, J.R. Arnold, and I.D. Kuntz. (2001). Design, docking, and evaluation of multiple libraries against multiple targets. Proteins Struct. Funct. Genet. 42:296–318.

    PubMed  CAS  Google Scholar 

  • Larsen, T.A., A.J. Olson, and D.S. Goodsell. (1998). Morphology of protein-protein interfaces. Structure 6:421–427.

    PubMed  CAS  Google Scholar 

  • Laskowski, R.A., N.M. Luscombe, M.B. Swindells, and J.M. Thornton. (1996). Protein clefts in molecular recognition and function. Protein Sci. 5:2438–2452.

    PubMed  CAS  Google Scholar 

  • Lawrence, M.C., and Colman, P.M. (1993). Shape complementarity at protein/protein interfaces. J. Mol. Biol. 234:946–950.

    PubMed  CAS  Google Scholar 

  • Lee, S.Y., H.S. Cho, J.G. Pelton, D. Yan, R.K. Henderson, D.S. King, L. Huang, S. Kustu, E.A. Berry, and D.E. Wemmer. (2001). Crystal structure of an activated response regulator bound to its target. Nat Struct Biol 8:52–56.

    PubMed  CAS  Google Scholar 

  • Lichtarge, O., and Sowa, M.E. (2002). Evolutionary predictions of binding surfaces and interactions. Curr. Opin. Struct. Biol. 12:21–27.

    PubMed  CAS  Google Scholar 

  • Lijnzaad, P., and Argos, P. (1997). Hydrophobic patches on protein subunit interfaces: charactersitics and prediction. Proteins 28:333–343.

    PubMed  CAS  Google Scholar 

  • Lo Conte, L., C. Chothia, and J. Janin. (1999). The atomic structure of protein-protein recognition sites. J Mol Biol 285:2177–2198.

    PubMed  Google Scholar 

  • Lu, L., H. Lu, and J. Skolnick. (2003). Development of unified statistical potentials describing proteinprotein interactions. Biophys. J. 84:1895–1901.

    PubMed  CAS  Google Scholar 

  • Lu, L., H. Lu, and J. Skolnick. (2002). MULTIPROSPECTOR: an algorithm for the prediction of proteinprotein interactions by multimeric threading. Proteins 49:350–364.

    PubMed  CAS  Google Scholar 

  • Ma, J., and Straub, J.E. (1994). Simulated annealing using the classical density distribution. J. Chem. Phys. 101:533–541.

    CAS  Google Scholar 

  • MacKerell, A.D., D. Bashford, M. Bellott, R.L. Dunbrack, J.D. Evanseck, M.J. Field, S. Fischer, J. Gao, H. Guo, S. Ha, D. Joseph-McCarthy, L. Kuchnir, K. Kuczera, F.T.K. Lau, C. Mattos, S. Michnick, T. Ngo, D.T. Nguyen, B. Prodhom, W.E. Reiher, B. Roux, M. Schlenkrich, J.C. Smith, R. Stote, J. Straub, M. Watanabe, J. Wiorkiewicz-Kuczera, D. Yin, and M. Karplus. (1998). All-atom empirical potential for molecular modeling and dynamics studies of proteins. J. Phys. Chem. B 102:3586–3616.

    CAS  Google Scholar 

  • Makino, S., T.J.A. Ewing, and I.D. Kuntz. (1999). DREAM++: Flexible docking program for virtual combinatorial libraries. J. Comput. Aided Mol. Des. 13:513–532.

    PubMed  CAS  Google Scholar 

  • Mariuzza, R.A., and Poljak, R.J. (1993). The basics of binding: mechanisms of antigen recognition and mimicry by antibodies. Curr. Opin. Immunol. 5:50–55.

    PubMed  CAS  Google Scholar 

  • Marshall, G.R. (1992). Three-dimensional structure of peptide-protein complexes: implications for recognition. Curr. Opin. Struct. Biol. 2:904–919.

    CAS  Google Scholar 

  • Marshall, G.R., C.D. Barry, H.E. Bosshard, R.A. Dammkoehler, and D.A. Dunn. (1979). The conformational parameter in drug design: the active analog approach. In: E.C. Olson, and Christoffersen, R.E. (eds), Computer-Assisted Drug Design. Washington, D.C., American Chemical Society. ACS Symposium 112:205–226.

    Google Scholar 

  • Marshall, G.R., R.H. Head, and R. Ragno. (2000). Affinity prediction: the sina qua non. In: Di Cera, E. (eds), Thermodynamics in Biology. Oxford University Press, New York. pp.87–111.

    Google Scholar 

  • McCammon, J.A. (1998). Theory of biomolecular recognition. Curr. Opin. Struct. Biol. 8:245–249.

    PubMed  CAS  Google Scholar 

  • McCoy, A.J., V.C. Epa, and P.M. Colman. (1997). Electrostatic complementarity at protein/protein interfaces. J. Mol. Biol. 268:570–584.

    PubMed  CAS  Google Scholar 

  • Meador, W.E., A.R. Means, and F.A. Quiocho. (1992). Target enzyme recognition by calmodulin: 2,4:o A structure of a calmodulin-peptide complex. Science 257:1251–1255.

    PubMed  CAS  Google Scholar 

  • Meyer, M., P. Wilson, and D. Schomburg. (1996). Hydrogen bonding and molecular surface shape complementarity as a basis for protein docking. J. Mol. Biol. 264:199–210.

    PubMed  CAS  Google Scholar 

  • Miller, D.W., and Dill, K.A. (1997). Ligand binding to proteins: the binding landscape model. Protein Sci. 6:2166–2179.

    PubMed  CAS  Google Scholar 

  • Miller, M., J. Schneider, B.K. Sathyanarayana, M.V. Toth, G.R. Marshall, L. Clawson, L. Selk, S.B. Kent, and A. Wlodawer. (1989). Structure of complex of synthetic HIV-1 protease with a substrate-based inhibitor at 2.3 A resolution. Science 246:1149–1152.

    PubMed  CAS  Google Scholar 

  • Miyazawa, S., and Jernigan, R.L. (1999). Self-consistent estimation of inter-residue protein contact energies based on an equilibrium mixture approximation of residues. Proteins 34:49–68.

    PubMed  CAS  Google Scholar 

  • Moont, G., H.A. Gabb, and M.J.E. Sternberg. (1999). Use of pair potential across protein interfaces in screening predicted docked complexes. Proteins 35:364–373.

    PubMed  CAS  Google Scholar 

  • Morris, G.M., D.S. Goodsell, R.S. Halliday, R. Huey, W.E. Hart, R.K. Belew, and A.J. Olson. (1998). Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J. Comput. Chem. 19:1639–1662.

    CAS  Google Scholar 

  • Moult, J., K. Fidelis, A. Zemla, and T. Hubbard. (2003). Critical assessment of methods of protein structure prediction (CASP)-round V. Proteins 53:334–339.

    PubMed  CAS  Google Scholar 

  • Murzin, A.G., and Finkelstein, A.V. (1988). General architecture of the alpha-helical globule. J. Mol. Biol. 204:749–769.

    PubMed  CAS  Google Scholar 

  • Nemethy, G., M.S. Pottle, and H.A. Scheraga. (1983). Energy parameters in polypeptides. 9. Updating of geometrical parameters, nonbonded interactions, and hydrogen bond interactions for the naturally occuring amino acids. J. Phys. Chem. 87:1883–1887.

    CAS  Google Scholar 

  • Nikiforovich, G.V., and Marshall, G.R. (2003). 3D Model for meta-II rhodopsin, an activated G-protein coupled receptor. Biochemistry 42:9110–9120.

    PubMed  CAS  Google Scholar 

  • Nikiforovich, G.V., S.G. Galaktionov, V.M. Tseitin, D.R. Lowis, M.D. Shenderovich, and G.R. Marshall. (1998). 3D Modeling for TM receptors: algorithms and validations. Lett. Pept. Sci. 5:413–415.

    CAS  Google Scholar 

  • Nikiforovich, G.V., S. Galaktionov, J. Balodis, and G.R. Marshall. (2001). Novel approach to computer modeling of seven-helical transmambrane proteins: current progress in test case of bacteriorhodopsin. Acta Biochim. Polon. 48:53–64.

    PubMed  CAS  Google Scholar 

  • Novotny, J., M. Handschumacher, E. Haber, R.E. Bruccoleri, W.B. Carlson, D.W. Fanning, J.A. Smith, and G.D. Rose. (1986). Antigenic determinants in proteins coincide with surface regions accessible to large probes (antibody domains). Proc. Natl. Acad. Sci. USA 83:226–230.

    PubMed  CAS  Google Scholar 

  • Nussinov, R., and Wolfson, H.J. (1991). Efficient detection of three-dimensional structural motifs in biological macromolecules by computer vision techniques. PNAS 88:10495–10499.

    PubMed  CAS  Google Scholar 

  • Oliver, S. (2000). Guilt-by-association goes global. Nature 403:601–603.

    PubMed  CAS  Google Scholar 

  • Oprea, T.I., and Marshall, G.R. (1998). Receptor-based prediction of binding affinities. Perspect. Drug Discov. Des. 9–11:35–61.

    Google Scholar 

  • Palma, P.N., L. Krippahl, J.E. Wampler, and J.J.G. Moura. (2000). BiGGER: Anew(soft) docking algorithm for predicting protein interactions. Proteins 39:372–384.

    PubMed  CAS  Google Scholar 

  • Pappu, R.V., G.R. Marshall, and J.W. Ponder. (1999). A potential smoothing algorithm accurately predicts transmembrane helix packing. Nat. Struct. Biol. 6:50–55.

    PubMed  CAS  Google Scholar 

  • Peters, K.P., J. Fauck, and C. Frommel. (1996). The automatic search for ligand binding sites in proteins of known three-dimensional structure using only geometric criteria. J. Mol. Biol. 256:201–213.

    PubMed  CAS  Google Scholar 

  • Piela, L., J. Kostrowicki, and H.A. Scheraga. (1989). The multiple-minima problem in the conformational analysis of molecules. Deformation of the potential energy hypersurface by the diffusion equation method. J. Phys. Chem. 93:3339–3346.

    CAS  Google Scholar 

  • Platzer, K.E.B., F.A. Momany, and H.A. Scheraga. (1972). Conformational energy calculations of enzymesubstrate interactions. I. Computation of preferred conformations of some substrates of chymotrypsin. Int. J. Pept. Protein Res. 4:187–200.

    PubMed  CAS  Google Scholar 

  • Ponder, J.W., and Case, D.A. (2003). Force fields for protein simulations. Adv. Protein Chem. 66:27–85.

    PubMed  CAS  Google Scholar 

  • Ponder, J.W., and Richards, F.M. (1987). Internal packing and protein structural classes. Cold Spring Harbor Symp. Quant. Biol. LII:421–428.

    Google Scholar 

  • Reddy, B.V.B., and Blundell, T.L.(1993). Packing of secondary structure elements in proteins. Analysis and prediction of inter-helix distances. J. Mol. Biol. 233:464–479.

    PubMed  CAS  Google Scholar 

  • Richards, F.M. (1977). Areas, volumes, packing, and protein structure. Annu. Rev. Biophys. Bioeng. 6:151–176.

    PubMed  CAS  Google Scholar 

  • Richmond, T.J., and Richards, F.M. (1978). Packing of alpha-helices: geometrical constraints and contact areas. J. Mol. Biol. 119:537–555.

    PubMed  CAS  Google Scholar 

  • Ritchie, D.W., and Kemp, G.J.L. (2000). Protein docking using spherical polar Fourier correlations. Proteins 39:178–194.

    PubMed  CAS  Google Scholar 

  • Sali, A., R. Glaeser, T. Earnest, and W. Baumeister. (2003). Fromwords to literature in structural proteomics. Nature 422:216–225.

    PubMed  CAS  Google Scholar 

  • Salwinski, L., and Eisenberg, D. (2003). Computational methods of analysis of protein-protein interactions. Curr. Opin. Struct. Biol. 13:377–382.

    PubMed  CAS  Google Scholar 

  • Samudrala, R., and Levitt, M. (2000). Decoys ‘R’ Us: a database of incorrect conformations to improve protein structure prediction. Protein Sci. 9:1399–1401.

    PubMed  CAS  Google Scholar 

  • Schneidman-Duhovny, D., Y. Inbar, V. Polak, M. Shatsky, I. Halperin, H. Benyamini, A. Barzilai, O. Dror, N. Haspel, R. Nussinov, and H.J. Wolfson. (2003). Taking geometry to its edge: fast unbound rigid (and hinge-bent) docking. Proteins 52:107–112.

    PubMed  CAS  Google Scholar 

  • Shoemaker, B.A., J.J. Portman, and P.G. Wolynes. (2000). Speeding molecular recognition by using the folding funnel: the fly-casting mechanism. Proc. Natl. Acad. Sci. USA 97:8868–8873.

    PubMed  CAS  Google Scholar 

  • Shoichet, B.K., A.R. Leach, and I.D. Kuntz. (1999). Ligand solvation in molecular docking. Proteins 34:4–16.

    PubMed  CAS  Google Scholar 

  • Shultz, M.D., and Chmielewski, J. (1999). Probing the role of interfacial residues in a dimerization inhibitor of HIV-1 protease. Bioorg. Med. Chem. Lett. 9:2431–2436.

    PubMed  CAS  Google Scholar 

  • Sippl, M.J., M. Ortner, M. Jaritz, P. Lackner, and H. Flockner. (1996). Helmholtz free energies of atom pair interactions in proteins. Fold. Des. 1:289–298.

    PubMed  CAS  Google Scholar 

  • Skolnick, J., J.S. Fetrow, and A. Kolinski. (2000). Structural genomics and its importance for gene function analysis. Nat. Biotech. 18:283–287.

    CAS  Google Scholar 

  • Sternberg, M.J.E., H.A. Gabb, and R.M. Jackson. (1998). Predictive docking of protein-protein and protein-DNA complexes. Curr. Opin. Struct. Biol. 8:250–256.

    PubMed  CAS  Google Scholar 

  • Sternberg, M.J.E., H.A. Gabb, and R.M. Jackson. (1998). CombiDOCK: Structure-based combinatorial docking and library design. J. Comput. Aided Mol. Des. 12:597–604.

    Google Scholar 

  • Ten Eyck, L. F., J. Mandell, V.A. Roberts, and M.E. Pique. (1995). Surveying molecular interactions with DOT. ACM/IEEE Supercomputing Conference, San Diego, CA.

    Google Scholar 

  • Todd, M.J., N. Semo, and E. Freire. (1998). The structural stability of the HIV-1 protease. J. Mol. Biol. 283:475–488.

    PubMed  CAS  Google Scholar 

  • Tong, A.H.Y., G. Lesage, G.D. Bader, H. Ding, H. Xu, X. Xin, J. Young, G.F. Berriz, R.L. Brost, M. Chang, Y. Chen, X. Cheng, G. Chua, H. Friesen, D.S. Goldberg, J. Haynes, C. Humphries, G. He, S. Hussein, L. Ke, N. Krogan, Z. Li, J.N. Levinson, H. Lu, P. Menard, C. Munyana, A.B. Parsons, O. Ryan, R. Tonikian, T. Roberts, A.-M. Sdicu, J. Shapiro, B. Sheikh, B. Suter, S.L. Wong, L.V. Zhang, H. Zhu, C.G. Burd, S. Munro, C. Sander, J. Rine, J. Greenblatt, M. Peter, A. Bretscher, G. Bell, F.P. Roth, G.W. Brown, B. Andrews, H. Bussey, and C. Boone. (2004). Global mapping of the yeast genetic interaction network. Science 303:808–813.

    PubMed  CAS  Google Scholar 

  • Totrov, M., and Abagyan, R. (1994). Detailed ab initio prediction of lysozyme-antibody complex with 1.6A accuracy. Nat. Struct. Biol. 1:259–263.

    PubMed  CAS  Google Scholar 

  • Tovchigrechko, A., and Vakser, I.A. (2001). How common is the funnel-like energy landscape in proteinprotein interactions? Protein Sci. 10:1572–1583.

    PubMed  CAS  Google Scholar 

  • Tovchigrechko, A., C.A. Wells, and I.A. Vakser. (2002). Docking of protein models. Protein Sci. 11:1888–1896.

    PubMed  CAS  Google Scholar 

  • Trosset, J.-Y., and Scheraga, H.A. (1998). Reaching the global minimum in docking simulations: a Monte Carlo energy minimization approach using Bezier splines. Proc. Nat. Acad. Sci. USA 95:8011–8015.

    PubMed  CAS  Google Scholar 

  • Trosset, J.Y., and Scheraga, H.A. (1999). PRODOCK: software package for protein modeling and docking. J. Comput. Chem. 20:412–427.

    CAS  Google Scholar 

  • Tsai, C.-J., S.L. Lin, H.J. Wolfson, and R. Nussinov. (1996). Protein-protein interfaces: architectures and interactions in protein-protein interfaces and in protein cores. Their similarities and differences. Crit. Rev. Biochem. Mol. Biol. 31:127–152.

    PubMed  CAS  Google Scholar 

  • Tsai, C.-J., S.L. Lin, H. Wolfson, and R. Nussinov. (1997). Studies of protein-protein interfaces: a statistical analysis of the hydrophobic effect. Protein Sci. 6:53–64.

    PubMed  CAS  Google Scholar 

  • Tsai, C.-J., S. Kumar, B. Ma, and R. Nussinov. (1999). Folding funnels, binding funnels, and protein function. Protein Sci. 8:1181–1190.

    PubMed  CAS  Google Scholar 

  • Uetz, P., L. Giot, G. Cagney, T.A. Mansfield, R.S. Judson, J.R. Knight, D. Lockshon, V. Narayan, M. Srinivasan, P. Pochart, A. Qureshi-Emili, Y. Li, B. Godwin, D. Conover, T. Kalbfleisch, G. Vijayadamodar, M. Yang, M. Johnson, S. Fields, and J.M. Rothberg. (2000). A comprehensive analysis of protein-protein interactions in Saccaromyces cerevisiae. Nature 403:623–627.

    PubMed  CAS  Google Scholar 

  • Vajda, S., M. Sippl, and J. Novotny. (1997). Empirical potentials and functions for protein folding and binding. Curr. Opin. Struct. Biol. 7:222–228.

    PubMed  CAS  Google Scholar 

  • Vajda, S., I.A. Vakser, M.J.E. Sternberg, and J. Janin. (2002). Meeting report: modeling of protein interactions in genomes. Proteins 47:444–446.

    PubMed  CAS  Google Scholar 

  • Vakser, I.A. (1995). Protein docking for low-resolution structures. Protein Eng. 8:371–377.

    PubMed  CAS  Google Scholar 

  • Vakser, I.A. (1996a). Long-distance potentials: an approach to the multiple-minima problem in ligandreceptor interaction. Protein Eng. 9:37–41.

    PubMed  CAS  Google Scholar 

  • Vakser, I.A. (1996b). Low-resolution docking: prediction of complexes for underdetermined structures. Biopolymers 39:455–464.

    PubMed  CAS  Google Scholar 

  • Vakser, I.A. (1996c). Main-chain complementarity in protein-protein recognition. Protein Eng. 9:741–744.

    PubMed  CAS  Google Scholar 

  • Vakser, I.A. (1997). Evaluation of GRAMM low-resolution docking methodology on the hemagglutininantibody complex. Proteins (Suppl.1):226–230.

    PubMed  Google Scholar 

  • Vakser, I.A., and Aflalo, C. (1994). Hydrophobic docking: a proposed enhancement to molecular recognition techniques. Proteins 20:320–329.

    PubMed  CAS  Google Scholar 

  • Vakser, I.A., and Jiang, S. (2002). Strategies for modeling the interactions of the transmembrane helices of G-protein coupled receptors by geometric complementarity using the GRAMM computer algorithm. Methods Enzymol. 343:313–328.

    PubMed  Google Scholar 

  • Vakser, I.A., and Nikiforovich, G.V. (1995). Protein docking in the absence of detailed molecular structures. In: Atassi, M.Z and Appella, E. (eds.), Methods in Protein Structure Analysis. New York, Plenum Press, pp. 505–514.

    Google Scholar 

  • Vakser, I.A., O.G. Matar, and C.F. Lam. (1999). A systematic study of low-resolution recognition in protein-protein complexes. Proc. Natl. Acad. Sci. USA 96:8477–8482.

    PubMed  CAS  Google Scholar 

  • Varadarajan, R., P.R. Connelly, J.M. Sturtevant, and F.M. Richards. (1992). Heat capacity changes for protein-peptide interactions in the ribonuclease S system. Biochemistry 31:1421–1426.

    PubMed  CAS  Google Scholar 

  • Vassilev, L.T., B.T. Vu, B. Graves, D. Carvajal, F. Podlaski, Z. Filipovic, N. Kong, U. Kammlott, C. Lukacs, C. Klein, N. Fotouhi, and E.A. Liu. (2004). In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science. 303:844–848.

    PubMed  CAS  Google Scholar 

  • Veselovsky, A.V., Y.D. Ivanov, A.S. Ivanov, A.I. Archakov, P. Lewi, and P. Janssen. (2002). Protein-protein interactions: mechanisms and modification by drugs. J. Mol. Recognit. 15:405–422.

    PubMed  CAS  Google Scholar 

  • Volz, K. (1993). Structural conservation in the CheY superfamily. Biochemistry 32:11741–11753.

    PubMed  CAS  Google Scholar 

  • Vukmirovic, O.G., and Tilghman, S.M. (2000). Exploring genome space. Nature 405:820–822.

    PubMed  CAS  Google Scholar 

  • Walther, D., F. Eisenhaber, and P. Argos. (1996). Principles of helix-helix packing in proteins: the helical lattice superposition model. J. Mol. Biol. 255:536–553.

    PubMed  CAS  Google Scholar 

  • Weiner, S.J., P.A. Kollman, D.A. Case, U.C. Singh, C. Ghio, G. Alagona, J. Salvatore Profeta, and P. Weiner. (1984). A new force field for molecular mechanical simulation of nucleic acids and proteins. J. Am. Chem. Soc. 106:765–784.

    CAS  Google Scholar 

  • Welch, M., N. Chinardet, L. Mourey, C. Birck, and J.P. Samama. (1998). Structure of the CheY-binding domain of histidine kinase CheA in complex with CheY. Nat. Struct. Biol. 5:25–29.

    PubMed  CAS  Google Scholar 

  • Williams, D.E. (1988). Representation of the molecular electrostatic potential by atomic multipole and bond dipole models. J. Comput. Chem. 9:745–763.

    CAS  Google Scholar 

  • Williams, D.E. (1991). Net atomic charge and multipole models for the ab initio molecular electric potential. Rev. Comput. Chem. 2:219–271.

    CAS  Google Scholar 

  • Wodak, S.J., and Janin, J. (1978). Computer analysis of protein-protein interactions. J. Mol. Biol. 124:323–342.

    PubMed  CAS  Google Scholar 

  • Xu, D., C.-J. Tsai, and R. Nussinov. (1997). Hydrogen bonds and bridges across protein-protein interfaces. Protein Eng. 10:999–1012.

    PubMed  CAS  Google Scholar 

  • Young, L., R.L. Jernigan, and D.G. Covell. (1994). A role for surface hydrophobicity in protein-protein recognition. Protein Sci. 3:717–729.

    PubMed  CAS  Google Scholar 

  • Yue, K., and Dill, K.A. (2000). Constraint-based assembly of tertiary protein structures from secondary structure elements. Protein Sci. 9:1935–1946.

    PubMed  CAS  Google Scholar 

  • Zhang, C., J. Chen, and C. DeLisi. (1999). Protein-protein recognition: exploring the energy funnels near the binding sites. Proteins 34:255–267.

    PubMed  Google Scholar 

  • Zhang, C., S. Liu, H. Zhou, and Y. Zhou. (2004a). An accurate, residue-level, pair potential of mean force for folding and binding based on the distance-scaled, ideal-gas reference state. Protein Sci. 13:400–411.

    PubMed  CAS  Google Scholar 

  • Zhang, C., S. Liu, and Y. Zhou. (2004b). Accurate and efficient loop selections by the DFIRE-based allatom statistical potential. Protein Sci. 13:391–399.

    PubMed  CAS  Google Scholar 

  • Zhao, R., E.J. Collins, R.B. Bourret, and R.E. Silversmith. (2002). Structure and catalytic mechanism of the E. coli chemotaxis phosphatase CheZ. Nat. Struct. Biol. 9:570–575.

    PubMed  CAS  Google Scholar 

  • Zhu, X., K. Volz, and P. Matsumura. (1997). The CheZ-binding surface of CheY overlaps the CheA-and FliM-binding surfaces. J. Biol. Chem. 272:23758–23764.

    PubMed  CAS  Google Scholar 

  • Zutshi, R., M. Brickner, and J. Chmielewski. (1998). Inhibiting the assembly of protein-protein interfaces. Curr. Opin. Chem. Biol. 2:62–66.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Marshall, G.R., Vakser, I.A. (2005). Protein-Protein Docking Methods. In: Waksman, G. (eds) Proteomics and Protein-Protein Interactions. Protein Reviews, vol 3. Springer, Boston, MA. https://doi.org/10.1007/0-387-24532-4_6

Download citation

Publish with us

Policies and ethics