Skip to main content

Tall Tales from de Sitter Space

  • Chapter
Lectures on Quantum Gravity

Part of the book series: Series of the Centro De Estudios Científicos ((SCEC))

Abstract

This is a short summary of lectures on some of the recent ideas emerging in the discussion of quantum gravity with a positive cosmological constant. The lectures given at the School on Quantum Gravity, at Centro de Estudios Científicos, Valdivia, Chile in January 2002. The following summary is largely based on material appearing in refs. [1, 2, 3].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Bousso, O. DeWolfe and R.C. Myers, “Unbounded entropy in spacetimes with positive cosmological constant,” arXiv:hep-th/0205080.

    Google Scholar 

  2. F. Leblond, D. Marolf and R.C. Myers, “Tall tales from de Sitter space I: Renormalization group flows,” JHEP 0206 (2002) 052 [arXiv:hep-th/0202094].

    Article  MathSciNet  ADS  Google Scholar 

  3. F. Leblond, D. Marolf and R.C. Myers, “Tall tales from de Sitter space II: Field theory dualities,” [arXiv:hep-th/0211025].

    Google Scholar 

  4. S. Perlmutter et al. [Supernova Cosmology Project Collaboration], “Measurements of the Cosmological Parameters Ω and Λ from the First Seven Supernovae at z≥35,” Astrophys. J. 483, 565 (1997) [arXiv:astro-ph/9608192]; S. Perlmutter et al. [Supernova Cosmology Project Collaboration], “Discovery of a Supernova Explosion at Half the Age of the Universe and its Cosmological Implications,” Nature 391, 51 (1998) [arXiv:astro-ph/9712212]; A.G. Riess et al. [Supernova Search Team Collaboration], “Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant,” Astron. J. 116, 1009 (1998) [arXiv:astro-ph/9805201].; N.A. Bahcall, J.P. Ostriker, S. Perlmutter and P.J. Steinhardt, “The Cosmic Triangle: Revealing the State of the Universe,” Science 284, 1481 (1999) [arXiv:astro-ph/9906463]; P. de Bernardis et al., “Multiple peaks in the angular power spectrum of the cosmic microwave background: Significance and consequences for cosmology,” Astrophys. J. 564 (2002) 559 [arXiv:astro-ph/0105296]; R. Stompor et al., “Cosmological implications of the MAXIMA-I high resolution Cosmic Microwave Background anisotropy measurement,” Astrophys. J. 561 (2001) L7 [arXiv:astro-ph/0105062]; A.H. Jaffe et al. [Boomerang Collaboration], “Cosmology from Maxima-1, Boomerang and COBE/DMR CMB Observations,” Phys. Rev. Lett. 86 (2001) 3475 [arXiv:astroph/0007333]; M.E. Abroe et al., “Frequentist Estimation of Cosmological Parameters from the MAXIMA-1 Cosmic Microwave Background Anisotropy Data,” Mon. Not. Roy. Astron. Soc. 334 (2002) 11 [arXiv:astro-ph/0111010].

    Article  ADS  Google Scholar 

  5. A. Strominger, “The dS/CFT correspondence,” JHEP 0110 (2001) 034 [arXiv:hep-th/0106113].

    Article  MathSciNet  ADS  Google Scholar 

  6. E. Witten, “Quantum gravity in de Sitter space,” arXiv:hep-th/0106109.

    Google Scholar 

  7. T. Banks, “Cosmological breaking of supersymmetry or little Lambda goes back to the future. II,” arXiv:hep-th/0007146.

    Google Scholar 

  8. W. Fischler, “Taking de Sitter seriously,” talk given at Role of Scaling Laws in Physics and Biology (Celebrating the 60th Birthday of Geoffrey West), Santa Fe, December 2000.

    Google Scholar 

  9. A. Strominger, “Inflation and the dS/CFT correspondence,” JHEP 0111 (2001) 049 [arXiv:hep-th/0110087].

    Article  MathSciNet  ADS  Google Scholar 

  10. V. Balasubramanian, J. de Boer, and D. Minic, “Mass, Entropy, and Holography in Asymptotically de Sitter spaces” Phys. Rev. D 65 (2002) 123508 [arXiv:hep-th/0110108].

    Article  MathSciNet  ADS  Google Scholar 

  11. R. Bousso, A. Maloney and A. Strominger, “Conformal vacua and entropy in de Sitter space,” Phys. Rev. D 65 (2002) 104039 [arXiv:hep-th/0112218].

    Article  MathSciNet  ADS  Google Scholar 

  12. M. Spradlin and A. Volovich, “Vacuum states and the S-matrix in dS/CFT,” Phys. Rev. D 65 (2002) 104037 [arXiv:hep-th/0112223].

    Article  MathSciNet  ADS  Google Scholar 

  13. V. Balasubramanian, P. Horava, and D. Minic, “Deconstructing De Sitter,” JHEP 0105 (2001) 043 [arXiv:hep-th/0103171].

    Article  MathSciNet  ADS  Google Scholar 

  14. A.M. Ghezelbash and R.B. Mann, “Action, mass and entropy of Schwarzschild-de Sitter black holes and the de Sitter/CFT correspondence,” JHEP 0201 (2002) 005 [arXiv:hep-th/0111217].

    Article  MathSciNet  ADS  Google Scholar 

  15. D. Klemm and L. Vanzo, “De Sitter gravity and Liouville theory,” JHEP 0204 (2002) 030 [arXiv:hep-th/0203268].

    Article  MathSciNet  ADS  Google Scholar 

  16. D. Klemm, “Some aspects of the de Sitter/CFT correspondence,” Nucl. Phys. B 625 (2002) 295 [arXiv:hep-th/0106247]; S. Cacciatori and D. Klemm, “The asymptotic dynamics of de Sitter gravity in three dimensions,” Class. Quant. Grav. 19 (2002) 579 [arXiv:hep-th/0110031].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  17. M.K. Parikh, I. Savonije and E. Verlinde, “Elliptic de Sitter space: dS/Z(2),” arXiv:hep-th/0209120.

    Google Scholar 

  18. G.W. Gibbons and S. Hawking, “Cosmological event horizons, thermodynamics and particle creation,” Phys. Rev. D 7 (1977) 2738.

    Article  MathSciNet  ADS  Google Scholar 

  19. A. Strominger and C. Vafa, “Microscopic Origin of the Bekenstein-Hawking Entropy,” Phys. Lett. B 379 (1996) 99 [arXiv:hep-th/9601029].

    Article  MathSciNet  ADS  Google Scholar 

  20. A.W. Peet, “TASI lectures on black holes in string theory,” arXiv:hep-th/0008241; S.R. Das and S.D. Mathur, “The Quantum Physics Of Black Holes: Results From String Theory,” Ann. Rev. Nucl. Part. Sci. 50 (2000) 153 [arXiv:gr-qc/0105063]; J.R. David, G. Mandal and S.R. Wadia, “Microscopic formulation of black holes in string theory,” Phys. Rept. 369 (2002) 549 [arXiv:hep-th/0203048].

    Google Scholar 

  21. J.M. Maldacena, “Black holes in string theory,” arXiv:hep-th/9607235.

    Google Scholar 

  22. R.C. Myers, “Black holes and string theory,” arXiv:gr-qc/0107034.

    Google Scholar 

  23. C.V. Johnson, D-branes (Cambridge University Press, 2002).

    Google Scholar 

  24. R.C. Myers, “Nonabelian D-branes and noncommutative geometry,” Int. J. Mod. Phys. A 16 (2001) 956 [arXiv:hep-th/0106178].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  25. R.C. Myers, “Dielectric-branes,” JHEP 9912 (1999) 022 [arXiv:hep-th/9910053].

    Article  MathSciNet  ADS  Google Scholar 

  26. http://www.hasd.org/ges/talltale/talltale.htm

    Google Scholar 

  27. See, for example: S.W. Hawking and G.F.R. Ellis, The large scale structure of space-time (Cambridge: Cambridge University Press, 1980).

    Google Scholar 

  28. J.D. Bekenstein, “Generalized Second Law Of Thermodynamics In Black Hole Physics,” Phys. Rev. D 9 (1974) 3292; J.D. Bekenstein, “Black Holes And Entropy,” Phys. Rev. D 7 (1973) 2333; J.D. Bekenstein, “Black Holes And The Second Law,” Lett. Nuovo Cim. 4 (1972) 737.

    Article  ADS  Google Scholar 

  29. S. Hawking, J.M. Maldacena and A. Strominger, “DeSitter entropy, quantum entanglement and AdS/CFT,” JHEP 0105 (2001) 001 [arXiv:hep-th/0002145].

    Article  MathSciNet  ADS  Google Scholar 

  30. S. Carlip, Quantum Gravity In 2+1 Dimensions, (Cambridge University Press, 1998).

    Google Scholar 

  31. J.M. Maldacena and A. Strominger, “Statistical entropy of de Sitter space,” JHEP 9802 (1998) 014 [arXiv:gr-qc/9801096]; F.L. Lin and Y.S. Wu, “Near-horizon Virasoro symmetry and the entropy of de Sitter space in any dimension,” Phys. Lett. B 453 (1999) 222 [arXiv:hep-th/9901147].

    Article  MathSciNet  ADS  Google Scholar 

  32. L. Smolin, “Quantum gravity with a positive cosmological constant,” arXiv:hep-th/0209079.

    Google Scholar 

  33. G. ’t Hooft, “Dimensional Reduction In Quantum Gravity,” arXiv:gr-qc/9310026; L. Susskind, “The World as a hologram,” J. Math. Phys. 36 (1995) 6377 [arXiv:hep-th/9409089].

    Google Scholar 

  34. R. Bousso, “Holography in general space-times,” JHEP 9906, 028 (1999) [arXiv:hep-th/9906022]; “A Covariant Entropy Conjecture,” JHEP 9907, 004 (1999) [arXiv:hep-th/9905177].

    Article  MathSciNet  ADS  Google Scholar 

  35. R. Bousso, “The holographic principle,” Rev. Mod. Phys. 74 (2002) 825 [arXiv:hep-th/0203101].

    Article  MathSciNet  ADS  Google Scholar 

  36. R. Bousso, “Bekenstein bounds in de Sitter and flat space,” JHEP 0104 (2001) 035 [arXiv:hep-th/0012052].

    Article  MathSciNet  ADS  Google Scholar 

  37. L. Susskind, L. Thorlacius and J. Uglum, “The Stretched horizon and black hole complementarity,” Phys. Rev. D 48, 3743 (1993) [arXiv:hep-th/9306069]; L. Susskind, “String theory and the principles of black hole complementarity,” Phys. Rev. Lett. 71, 2367 (1993) [arXiv:hep-th/9307168]; L. Susskind and L. Thorlacius, “Gedanken experiments involving black holes,” Phys. Rev. D 49, 966 (1994) [arXiv:hep-th/9308100].

    Article  MathSciNet  ADS  Google Scholar 

  38. R. Bousso, “Positive vacuum energy and the N-bound,” JHEP 0011 (2000) 038 [arXiv:hep-th/0010252].

    Article  MathSciNet  ADS  Google Scholar 

  39. P.G. Freund and M.A. Rubin, “Dynamics Of Dimensional Reduction,” Phys. Lett. B 97 (1980) 233.

    Article  MathSciNet  ADS  Google Scholar 

  40. E. Silverstein, “(A)dS backgrounds from asymmetric orientifolds,” arXiv:hep-th/0106209; A. Maloney, E. Silverstein and A. Strominger, “De Sitter space in noncritical string theory,” arXiv:hep-th/0205316.

    Google Scholar 

  41. C.M. Hull, “De Sitter space in supergravity and M theory,” JHEP 0111 (2001) 012 [arXiv:hep-th/0109213]; C.M. Hull, “Domain wall and de Sitter solutions of gauged supergravity,” JHEP 0111 (2001) 061 [arXiv:hep-th/0110048]; G.W. Gibbons and C.M. Hull, “de Sitter space from warped supergravity solutions,” arXiv:hep-th/0111072.

    Article  MathSciNet  ADS  Google Scholar 

  42. M. Gutperle and A. Strominger, “Spacelike branes,” JHEP 0204 (2002) 018 [arXiv:hep-th/0202210]; C.M. Chen, D.V. Gal’tsov and M. Gutperle, “S-brane solutions in supergravity theories,” Phys. Rev. D 66 (2002) 024043 [arXiv:hep-th/0204071]; M. Kruczenski, R.C. Myers and A.W. Peet, “Supergravity S-branes,” JHEP 0205 (2002) 039 [arXiv:hep-th/0204144].

    Article  MathSciNet  ADS  Google Scholar 

  43. C. Herdeiro, S. Hirano and R. Kallosh, “String theory and hybrid inflation / acceleration,” JHEP 0112 (2001) 027 [arXiv:hep-th/0110271]; K. Dasgupta, C. Herdeiro, S. Hirano and R. Kallosh, “D3/D7 inflationary model and M-theory,” Phys. Rev. D 65 (2002) 126002 [arXiv:hep-th/0203019].

    Article  MathSciNet  ADS  Google Scholar 

  44. J.D. Brown and C. Teitelboim, “Neutralization Of The Cosmological Constant By Membrane Creation,” Nucl. Phys. B 297 (1988) 787; J.D. Brown and C. Teitelboim, “Dynamical Neutralization Of The Cosmological Constant,” Phys. Lett. B 195 (1987) 177.

    Article  MathSciNet  ADS  Google Scholar 

  45. T. Banks, “Heretics of the false vacuum: Gravitational effects on and of vacuum decay. II,” arXiv:hep-th/0211160.

    Google Scholar 

  46. O. Aharony, S.S. Gubser, J. Maldacena, H. Ooguri and Y. Oz, “Large N field theories, string theory and gravity,” Phys. Rept. 323, 183 (2000) [arXiv:hep-th/9905111].

    Article  MathSciNet  ADS  Google Scholar 

  47. V. Balasubramanian, J. de Boer and D. Minic, “Exploring de Sitter space and holography,” arXiv:hep-th/0207245; to appear in Annals of Physics.

    Google Scholar 

  48. E. Witten, “Anti-de Sitter space and holography,” Adv. Theor. Math. Phys. 2 (1998) 253 [arXiv:hep-th/9802150].

    MATH  MathSciNet  Google Scholar 

  49. V. Balasubramanian, P. Kraus and A.E. Lawrence, “Bulk vs. boundary dynamics in anti-de Sitter spacetime,” Phys. Rev. D 59 (1999) 046003 [arXiv:hep-th/9805171].

    Article  MathSciNet  ADS  Google Scholar 

  50. S.S. Gubser, I.R. Klebanov and A.M. Polyakov, “Gauge theory correlators from non-critical string theory,” Phys. Lett. B 428 (1998) 105 [arXiv:hep-th/9802109].

    Article  MathSciNet  ADS  Google Scholar 

  51. P. Breitenlohner and D.Z. Freedman, “Positive Energy In Anti-De Sitter Backgrounds And Gauged Extended Supergravity,” Phys. Lett. B 115 (1982) 197; “Stability In Gauged Extended Supergravity,” Annals Phys. 144 (1982) 249.

    Article  MathSciNet  ADS  Google Scholar 

  52. L. Mezincescu and P.K. Townsend, “Stability At A Local Maximum In Higher Dimensional Anti-De Sitter Space And Applications To Supergravity,” Annals Phys. 160 (1985) 406.

    Article  MathSciNet  ADS  Google Scholar 

  53. I.R. Klebanov and E. Witten, “AdS/CFT correspondence and symmetry breaking,” Nucl. Phys. B 556 (1999) 89 [arXiv:hep-th/9905104].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  54. L. Susskind and E. Witten, “The holographic bound in anti-de Sitter space,” arXiv:hep-th/9805114; A.W. Peet and J. Polchinski, “UV/IR relations in AdS dynamics,” Phys. Rev. D 59, 065011 (1999) [arXiv:hep-th/9809022].

    Google Scholar 

  55. R. Emparan, C.V. Johnson and R.C. Myers, “Surface terms as counterterms in the AdS/CFT correspondence,” Phys. Rev. D 60, 104001 (1999) [arXiv:hep-th/9903238].

    Article  MathSciNet  ADS  Google Scholar 

  56. V. Balasubramanian and P. Kraus, “Spacetime and the holographic renormalization group,” Phys. Rev. Lett. 83 (1999) 3605 [arXiv:hep-th/9903190].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  57. N.R. Constable and R.C. Myers, “Exotic scalar states in the AdS/CFT correspondence,” JHEP 9911, 020 (1999) [arXiv:hep-th/9905081]; K.A. Intriligator, “Maximally supersymmetric RG flows and AdS duality,” Nucl. Phys. B 580, 99 (2000) [arXiv:hep-th/9909082]; M.S. Costa, “Absorption by double-centered D3-branes and the Coulomb branch of N=4 SYM theory,” JHEP 0005, 041 (2000) [arXiv:hep-th/9912073]; M.S. Costa, “A test of the AdS/CFT duality on the Coulomb branch,” Phys. Lett. B 482, 287 (2000) [Erratum-ibid. B 489, 439 (2000)] [arXiv:hep-th/0003289]; U.H. Danielsson, A. Guijosa, M. Kruczenski and B. Sundborg, “D3-brane holography,” JHEP 0005, 028 (2000) [arXiv:hep-th/0004187]; N. Evans, C.V. Johnson and M. Petrini, “Clearing the throat: Irrelevant operators and finite temperature in large N gauge theory,” JHEP 0205, 002 (2002) [arXiv:hep-th/0112058].

    Article  MathSciNet  ADS  Google Scholar 

  58. J. Distler and F. Zamora, “Non-supersymmetric conformal field theories from stable anti-de Sitter spaces,” Adv. Theor. Math. Phys. 2, 1405 (1999) [arXiv:hep-th/9810206]; L. Girardello, M. Petrini, M. Porrati and A. Zaffaroni, “Novel local CFT and exact results on perturbations of N=4 super Yang-Mills from AdS dynamics,” JHEP 9812, 022 (1998) [arXiv:hep-th/9810126]; D.Z. Freedman, S.S. Gubser, K. Pilch and N.P. Warner, “Continuous distributions of D3-branes and gauged supergravity,” JHEP 0007, 038 (2000) [arXiv:hep-th/9906194]; N.R. Constable and R.C. Myers, “Exotic scalar states in the AdS/CFT correspondence,” JHEP 9911, 020 (1999) [arXiv:hep-th/9905081]; L. Girardello, M. Petrini, M. Porrati and A. Zaffaroni, “The supergravity dual of N = 1 super Yang-Mills theory,” Nucl. Phys. B 569, 451 (2000) [arXiv:hep-th/9909047].

    MathSciNet  Google Scholar 

  59. D.Z. Freedman, S.S. Gubser, K. Pilch and N.P. Warner, “Renormalization group flows from holography supersymmetry and a c-theorem,” Adv. Theor. Math. Phys. 3, 363 (1999) [arXiv:hep-th/9904017]; J. de Boer, E. Verlinde and H. Verlinde, “On the holographic renormalization group,” JHEP 0008, 003 (2000) [arXiv:hep-th/9912012]; V. Balasubramanian, E.G. Gimon and D. Minic, “Consistency conditions for holographic duality,” JHEP 0005, 014 (2000) [arXiv:hep-th/0003147]; V. Sahakian, “Holography, a covariant c-function and the geometry of the renormalization group,” Phys. Rev. D 62, 126011 (2000) [arXiv:hep-th/9910099]; E. Alvarez and C. Gomez, “Geometric holography, the renormalization group and the c-theorem,” Nucl. Phys. B 541, 441 (1999) [arXiv:hep-th/9807226].

    MathSciNet  MATH  Google Scholar 

  60. See, for example: N.D. Birrell and P.C.W. Davies, Quantum fields in curved space (Cambridge, 1982).

    Google Scholar 

  61. E.A. Tagirov, “Consequences Of Field Quantization In De Sitter Type Cosmological Models,” Annals Phys. 76 (1973) 561.

    Article  ADS  Google Scholar 

  62. R. Raczka, N. Limic and J. Niederle, “Discrete Degenerate Representations of Noncompact Rotation Groups. I,” J. Math. Phys. 7 (1966) 1861; N. Limic, J. Niederle and R. Raczka, J. Math. Phys. 8 (1966) 2026; N. Limic, J. Niederle and R. Raczka, “Eigenfunction Expansions Associated with the Second-Order Invariant Operator on Hyperboloids and Cones. III,” J. Math. Phys. 8 (1967) 1079.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  63. B. Allen and A. Folacci, “The Massless Minimally Coupled Scalar Field In De Sitter Space,” Phys. Rev. D 35 (1987) 3771.

    Article  MathSciNet  ADS  Google Scholar 

  64. E. Mottola, “Particle Creation In De Sitter Space,” Phys. Rev. D 31 (1985) 754.

    Article  MathSciNet  ADS  Google Scholar 

  65. B. Allen, “Vacuum States In De Sitter Space,” Phys. Rev. D 32 (1985) 3136.

    Article  MathSciNet  ADS  Google Scholar 

  66. M. Spradlin and A. Volovich, “Vacuum states and the S-matrix in dS/CFT,” Phys. Rev. D 65 (2002) 104037 [arXiv:hep-th/0112223]. [rgflows] K.R. Kristjansson and L. Thorlacius, “Cosmological models and renormalization group flow,” JHEP 0205 (2002) 011 [arXiv:hep-th/0204058]; E. Halyo, “Holographic inflation,” arXiv:hep-th/0203235; A.J. Medved, “How not to construct an asymptotically de Sitter universe,” Class. Quant. Grav. 19 (2002) 4511 [arXiv:hep-th/0203191]; A.J. Medved, “dS-holographic C-functions with a topological, dilatonic twist,” Phys. Rev. D 66 (2002) 064001 [arXiv:hep-th/0202193]; R. Argurio, “Comments on cosmological RG flows,” arXiv:hep-th/0202183; F. Larsen, J.P. van der Schaar and R.G. Leigh, “de Sitter holography and the cosmic microwave background,” JHEP 0204 (2002) 047 [arXiv:hep-th/0202127].

    Article  MathSciNet  ADS  Google Scholar 

  67. A.B. Zamolodchikov, “Irreversibility of the Flux of the Renormalization Group in a 2D Field Theory,” JETP Lett. 43, 730 (1986) [Pisma Zh. Eksp. Teor. Fiz. 43, 565 (1986)].

    MathSciNet  ADS  Google Scholar 

  68. S. Gao and R.M. Wald, “The physical process version of the first law and the generalized second law for charged and rotating black holes,” Phys. Rev. D 64 (2001) 084020 [arXiv:gr-qc/0106071].

    Article  MathSciNet  ADS  Google Scholar 

  69. A. Borde and A. Vilenkin, “Eternal Inflation And The Initial Singularity,” Phys. Rev. Lett. 72 (1994) 3305 [arXiv:gr-qc/9312022]; A. Borde and A. Vilenkin, “The Impossibility Of Steady State Inflation,” arXiv:gr-qc/9403004; A. Borde and A. Vilenkin, “Singularities in inflationary cosmology: A review,” Int. J. Mod. Phys. D 5 (1996) 813 [arXiv:gr-qc/9612036]; A. Borde, A.H. Guth and A. Vilenkin, “Inflation is not past-eternal,” arXiv:gr-qc/0110012.

    Article  ADS  Google Scholar 

  70. T. Vachaspati and M. Trodden, “Causality and cosmic inflation,” Phys. Rev. D 61 (2000) 023502 [arXiv:gr-qc/9811037].

    Article  MathSciNet  ADS  Google Scholar 

  71. A. Strominger, private communication.

    Google Scholar 

  72. J.M. Maldacena, “Eternal black holes in Anti-de-Sitter,” [arXiv:hep-th/0106112].

    Google Scholar 

  73. V. Balasubramanian, P. Kraus and A.E. Lawrence, “Bulk vs. boundary dynamics in anti-de Sitter spacetime,” Phys. Rev. D 59 (1999) 046003 [arXiv:hep-th/9805171].

    Article  MathSciNet  ADS  Google Scholar 

  74. J. Louko and D. Marolf, “Single-exterior black holes and the AdS-CFT conjecture,” Phys. Rev. D 59 (1999) 066002 [arXiv:hep-th/9808081].

    Article  MathSciNet  ADS  Google Scholar 

  75. G.J. Galloway, K. Schleich, D. Witt and E. Woolgar, “The AdS/CFT correspondence conjecture and topological censorship,” Phys. Lett. B 505 (2001) 255 [arXiv:hep-th/9912119]; “Topological censorship and higher genus black holes,” Phys. Rev. D 60 (1999) 104039 [arXiv:gr-qc/9902061].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  76. M. Spradlin, A. Strominger and A. Volovich, “Les Houches lectures on de Sitter space,” arXiv:hep-th/0110007.

    Google Scholar 

  77. For example, the required flat space Green’s functions may be found in section 3 of: D.V. Galtsov, “Radiation reaction in various dimensions,” Phys. Rev. D 66 (2002) 025016 [arXiv:hep-th/0112110].

    Article  MathSciNet  ADS  Google Scholar 

  78. L. Dyson, J. Lindesay and L. Susskind, “Is there really a de Sitter/CFT duality,” JHEP 0208 (2002) 045 [arXiv:hep-th/0202163].

    Article  MathSciNet  ADS  Google Scholar 

  79. L. Dyson, M. Kleban and L. Susskind, “Disturbing implications of a cosmological constant,” JHEP 0210 (2002) 011 [arXiv:hep-th/0208013].

    Article  MathSciNet  ADS  Google Scholar 

  80. T. Banks, W. Fischler and S. Paban, “Recurrent nightmares?: Measurement theory in de Sitter space,” arXiv:hep-th/0210160.

    Google Scholar 

  81. J.P. Gazeau and M.V. Takook, “Massive vector field in de Sitter space,” J. Math. Phys. 41 (2000) 5920 [arXiv:gr-qc/9912080].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  82. J. Mickelsson and J. Niederle, “Contractions of representations of de Sitter groups,” Commun. Math. Phys. 27 (1972) 167.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  83. J.P. Gazeau, J. Renaud and M.V. Takook, “Gupta-Bleuler quantization for minimally coupled scalar fields in de Sitter space,” Class. Quant. Grav. 17 (2000) 1415 [arXiv:gr-qc/9904023].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  84. A.J. Tolley and N. Turok, “Quantization of the massless minimally coupled scalar field and the dS/CFT correspondence,” arXiv:hep-th/0108119.

    Google Scholar 

  85. M. Milton and I.A. Abramowitz, Handbook of mathematical functions (Dover, 1965).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Myers, R.C. (2005). Tall Tales from de Sitter Space. In: Gomberoff, A., Marolf, D. (eds) Lectures on Quantum Gravity. Series of the Centro De Estudios Científicos. Springer, Boston, MA. https://doi.org/10.1007/0-387-24992-3_6

Download citation

Publish with us

Policies and ethics