Skip to main content

Large-Scale Models in the Airline Industry

  • Chapter
Column Generation

Abstract

Operations research models are widely used in the airline industry. By using sophisticated optimization models and algorithms many airlines are able to improve profitability. In this paper we review these models and the underlying solution methodologies. We focus on models involving strategic business processes as well as operational processes. The former models include schedule design and fleeting, aircraft routing, and crew scheduling, while the latter models cope with irregular operations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abara, J. (1989). Applying integer linear programming to the fleet assignment problem. Interfaces, 19:20–38.

    Google Scholar 

  • Achour, H., Gamache, M., and Soumis, F. (2003). Branch and cut at the subproblem level in a column generation approach: Application to the airline industry. Les Cahiers du GERAD G-2003-34, HEC, Montréal, Canada.

    Google Scholar 

  • Ageeva, Y. (2000). Aproaches to Incorporating Robustness Into Airline Scheduling. Master’s Dthesis, Massachusetts Institute of Technology.

    Google Scholar 

  • Anbil, R., Barnhart, C., Johnson, E., and Hatay, L. (1994). A column generation technique for the long-haul crew assignment problem. In: Optimization in Industry II, pp. 7–24. John Wiley & Sons.

    Google Scholar 

  • Anbil, R., Forrest, J., and Pulleyblank, W. (1998). Column generation and the airline crew pairing problem. In: Proceedings of the International Congress of Mathematicians Berlin, Extra Volume ICM 1998 of Documenta Mathematica. Journal der Deutschen Mathematiker-Vereinigung, pp. 677–686, Universität Bielefeld, Fakultät für Mathematik, Bielefeld.

    Google Scholar 

  • Antes, J. (1997). Structuring the process of airline scheduling. In: Operations Research Proceedings (P. Kischka, ed.), 1997.

    Google Scholar 

  • Argüello, M., Bard, J., and Yu, G. (1997a). A GRASP for aircraft routing in response to groundings and delays. Journal of Combinatorial Optimization, 5:211–228.

    Article  Google Scholar 

  • Argüello, M., Bard, J., and Yu, G. (1997b). Models and methods for managing airline irregular operations aircraft routing. In: Operations Research in the Airline Industry (G. Yu, ed.), pp. 1–45, Kluwer Academic Publishers.

    Google Scholar 

  • Bard, J., Yu, G., and Argüello, M. (2001). Optimizing aircraft routings in response to groundings and delays. IIE Transactions, 33:931–947.

    Article  Google Scholar 

  • Barnhart, C., Johnson, E., Nemhauser, G., and Vance, P. (1996). Exceptions crew scheduling. Technical Report, The Logistics Institute, Georgia Institute of Technology.

    Google Scholar 

  • Barnhart, C., Johnson, E., Nemhauser, G., Savelsbergh, M., and Vance, P. (1998a). Branch-and-price: Column generation for solving huge integer programs. Operations Research, 46:316–329.

    MathSciNet  Google Scholar 

  • Barnhart, C., Boland, N., Clarke, L., Johnson, E., Nehmauser, G., and Shenoi, R. (1998b). Flight string model for aircraft fleeting and routing. Transportation Science, 32:208–220.

    Google Scholar 

  • Barnhart, C., Lu, F., and Shenoi, R. (1998c). Integrated airline schedule planning. In: Operations Research in the Airline Industry (G. Yu, ed.), pp. 384–403, Kluwer Academic Publishers.

    Google Scholar 

  • Barnhart, C., Farahat, A., and Lohatepanont, M. (2002a). Airline fleet assignment: An enhanced revenue model. Technical Report, Massachusetts Institute of Technology.

    Google Scholar 

  • Barnhart, C., Kniker, T., and Lohatepanont, M. (2002b). Itinerary-based airline fleet assignment. Transportation Science, 36:199–217.

    Article  Google Scholar 

  • Barnhart, C., Cohn, A., Johnson, E., Klabjan, D., Nemhauser, G., and Vance, P. (2003). Airline crew scheduling. In: Handbook of Transportation Science (R. W. Hall, ed.), Kluwer Scientific Publishers.

    Google Scholar 

  • Bélanger, N., Desaulniers, G., Soumis, F., and Desrosiers, J. (2003). Periodic airline fleet assignment with time windows, spacing constraints, and time dependant revenues. Forthcoming in: European Journal of Operational Research.

    Google Scholar 

  • Benders, J. (1962). Partitioning procedures for solving mixed-variables programming problems. Numerische Mathematik, 4:238–252.

    Article  MATH  MathSciNet  Google Scholar 

  • Berdy, P. (2002). Developing effective route networks. In: Handbook of Airline Economics (D. Jenkins, ed.), McGraw-Hill.

    Google Scholar 

  • Berge, M. (1994). Timetable optimization—Formulation, solution approaches, and computational issues. In: AGIFORS proceedings.

    Google Scholar 

  • Berge, M. and Hopperstad, C. (1993). Demand driven dispatch: A method for dynamic aircraft capacity assignment, models and algorithms. Operations Research, 41:153–168.

    Google Scholar 

  • Campbell, K., Durfee, R., and Hines, G. (1997). FedEx generates bid lines using simulated annealing. Interfaces, 27:1–16.

    CAS  Google Scholar 

  • Cao, J. and Kanafani, A. (1997a). Real-time decision support for integration of airline flight cancellations and delays part I: Mathematical formulations. Transportation Planning and Technology, 20:183–199.

    Google Scholar 

  • Cao, J. and Kanafani, A. (1997b). Real-time decision support for integration of airline flight cancellations and delays part II: Algorithms and computational experiments. Transportation Planning and Technology, 20:201–217.

    Google Scholar 

  • Carmen Systems

    Google Scholar 

  • Chebalov, S. and Klabjan, D. (2002). Robust airline crew scheduling: Move-up crews. In: Proceedings of the 2002 NSF Design, Service, and Manufacturing Grantees Research Conference.

    Google Scholar 

  • Clark, P. (2000). Dynamic fleet management. In: Handbook of Airline Operations (G. Butler and M. Keller, eds.), pp. 273–285, McGraw-Hill.

    Google Scholar 

  • Clarke, L., Hane, C., Johnson, E., and Nemhauser, G. (1996). Maintenance and crew considerations in fleet assignment. Transportation Science, 30:249–260.

    Google Scholar 

  • Clarke, L., Johnson, E., Nemhauser, G., and Zhu, Z. (1997). The aircraft rotation problem. In: Annals of OR: Mathematics of Industrial Systems II (R. E. Burkard, T. Ibaraki, and M. Queyranne, eds.), pp. 33–46, Baltzer Science Publishers.

    Google Scholar 

  • Clarke, M. D., Lettovský, L., and Smith, B. (2002). The development of the airline operations control center. In: Handbook of Airline Economics (D. Jenkins, ed.), pp. 197–215, McGraw-Hill.

    Google Scholar 

  • Cohn, A. and Barnhart, C. (2002). Improving crew scheduling by incorporating key maintenance routing decisions. Operations Research, 51:387–396.

    Article  MathSciNet  Google Scholar 

  • Cordeau, J., Stojković, G., Soumis, F., and Desrosiers, J. (2001). Benders decomposition for simultaneous aircraft routing and crew scheduling. Transportation Science, 35:375–388.

    Article  Google Scholar 

  • Daskin, M. and Panayoyopoulos, N. (1989). A Langrangian relaxation approach to assigning aircraft to routes in hub and spoke networks. Transportation Science, 23:91–99.

    Google Scholar 

  • Day, P. and Ryan, D. (1997). Flight attendant rostering for short-haul airline operations. Operations Research, 45:649–661.

    Google Scholar 

  • Desaulniers, G., Desrosiers, J., Dumas, Y., Marc, S., Rioux, B., Solomon, M., and Soumis, F. (1997a). Crew pairing at Air France. European Journal of Operational Research, 97:245–259.

    Article  Google Scholar 

  • Desaulniers, G., Desrosiers, J., Dumas, Y., Solomon, M. M., and Soumis, F. (1997b). Daily aircraft routing and scheduling. Management Science, 43:841–855.

    Google Scholar 

  • Desaulniers, G., Desrosiers, J., Ioachim, I., Solomon, M., and Soumis, F. (1998). A unified framework for deterministic time constrained vehicle routing and crew scheduling problems. In: Fleet Management and Logistics (T. Crainic and G. Laporte, eds.), pp. 57–93, Kluwer Publishing Company.

    Google Scholar 

  • Desaulniers, G., Desrosiers, J., Lasry, A., and Solomon, M. (1999). Crew pairing for a regional carrier. In: Computer-Aided Transit Scheduling: Lecture Notes in Economics and Mathematical Systems (N. Wilson, ed.), pp. 19–41. Springer Verlag.

    Google Scholar 

  • Desrochers, M. and Soumis, F. (1989). A column generation approach to the urban transit crew scheduling problem. Transportation Science, 23:1–13.

    Google Scholar 

  • Desrosiers, J., Dumas, Y., Solomon, M., and Soumis, F. (1995). Time constrained routing and scheduling. In: Handbook in Operations Research and Management Science, Network Routing (M. Ball, T. Magnanti, C. Monma, and G. Nemhauser, eds.), pp. 35–139, Elsevier Science Publishers.

    Google Scholar 

  • Ehrgott, M. and Ryan, D. (2001). Bicriteria robustness versus cost optimization in tour of duty planning at Air New Zealand. Technical Report, University of Auckland.

    Google Scholar 

  • Erdmann, A., Nolte, A., Noltemeier, A., and Schrader, R. (2001). Modeling and solving the airline schedule generation problem. Annals of Operations Research, 107:117–142.

    Article  MathSciNet  Google Scholar 

  • Etschmaier, M. and Mathaisel, D. (1985). Airline scheduling: An overview. Transportation Science, 19:127–138.

    Google Scholar 

  • Feo, T. and Bard, J. (1989). Flight scheduling and maintenance base planning. Management Science, 35:1415–1432.

    MathSciNet  Google Scholar 

  • Fisher, M. (1981). The Lagrangian relaxation method for solving integer programming problems. Management Science, 27:1–18.

    MATH  MathSciNet  Google Scholar 

  • Fisher, M. (1985). An applications oriented guide to Lagrangian relaxation. Interfaces, 15:10–21.

    Google Scholar 

  • Galia, R. and Hjorring, C. (2003). Modeling of complex costs and rules in a crew pairing column generator. Technical Report CRTR-0304, Carmen Systems.

    Google Scholar 

  • Gamache, M. and Soumis, F. (1998). A method for optimally solving the rostering problem. In: Operations Research in the Airline Industry (G. Yu, ed.), pp. 124–157. Kluwer Academic Publishers.

    Google Scholar 

  • Gamache, M., Soumis, F., Villeneuve, D., Desrosiers, J., and Gelinas, E. (1998). The preferential bidding system at Air Canada. Transportation Science, 32:246–255.

    Google Scholar 

  • Gamache, M., Soumis, F., Marquis, G., and Desrosiers, J. (1999). A column generation approach for large scale aircrew rostering problems. Operations Research, 47:247–262.

    Google Scholar 

  • Garvin, M. (2000). Service delivery system: A regional airline perspective. In: Handbook of Airline Operations (G. Butler and M. Keller, eds.), pp. 419–428, McGraw-Hill.

    Google Scholar 

  • Geoffrion, A. (1974). Lagrangean relaxation for integer programming. Mathematical Programming Study, 2:82–114.

    MATH  MathSciNet  Google Scholar 

  • Gopalan, R. and Talluri, K. (1998). The aircraft maintenance routing problem. Operations Research, 46:260–271.

    Google Scholar 

  • Hane, C., Barnhart, C., Johnson, E., Marsten, R., Nemhauser, G., and Sigismondi, G. (1995). The fleet assignment problem: Solving a largescale integer program. Mathematical Programming, 70:211–232.

    MathSciNet  Google Scholar 

  • Jacobs, T., Johnson, E., and Smith, B. (1999). O& D FAM: Incorporating passenger flows into the fleeting process. In: Thirty-Ninth Annual AGIFORS Symposium (R. Darrow, ed.), New Orleans.

    Google Scholar 

  • Jarrah, A. and Diamond, J. (1997). The problem of generating crew bidlines. Interfaces, 27:49–64.

    Article  Google Scholar 

  • Jarrah, A., Yu, G., Krishnamurthy, N., and Rakshit, A. (1993). A decision support framework for airline flight cancellations and delays. Transportation Science, 27:266–280.

    Google Scholar 

  • Kang, L. and Clarke, J. (2003). Degradable airline scheduling. Technical Report, Massachusetts Institute of Technology.

    Google Scholar 

  • Karow, M. (2003). Virtual Hubs: An Airline Schedule Recovery Concept And Model. Master’s thesis, Massachusetts Institute of Technology.

    Google Scholar 

  • Kharraziha, H., Ozana, M., and Spjuth, S. (2003). Large scale crew rostering. Technical Report CRTR-0305, Carmen Systems.

    Google Scholar 

  • Klabjan, D., Johnson, E., Nemhauser, G., Gelman, E., and Ramaswamy, S. (2001a). Airline crew scheduling with regularity. Transportation Science, 35:359–374.

    Article  Google Scholar 

  • Klabjan, D., Johnson, E., Nemhauser, G., Gelman, E., and Ramaswamy, S. (2001b). Solving large airline crew scheduling problems: Random pairing generation and strong branching. Computational Optimization and Applications, 20:73–91.

    Article  MathSciNet  Google Scholar 

  • Klabjan, D., Johnson, E., Nemhauser, G., Gelman, E., and Ramaswamy, S. (2002). Airline crew scheduling with time windows and plane count constraints. Transportation Science, 36:337–348.

    Article  Google Scholar 

  • Kniker, T. (1998). Itinerary-based airline fleet assignment. Ph.D Thesis, Massachusetts Institute of Technology.

    Google Scholar 

  • Kohl, N. and Karisch, S. (2004). Airline crew rostering: Problem types, modeling, and optimization. Annals of Operations Research, 127:223–257.

    Article  Google Scholar 

  • Kwok, L. and Wu, L. (1996). Development of an expert system in cabin crew pattern generation. International Journal of Expert Systems, 9:445–464.

    Google Scholar 

  • Lavoie, S., Minoux, M., and Odier, E. (1988). A new approach for crew pairing problems by column generation with an application to air transportation. European Journal of Operational Research, 35:45–58.

    Article  Google Scholar 

  • Lettovský, L. (1997). Airline operations recovery: An optimization approach. Ph.D Thesis, Georgia Institute of Technology.

    Google Scholar 

  • Lettovský, L., Johnson, E., and Smith, B. (1999). Schedule generation model. In: Thirty-Ninth Annual AGIFORS Symposium (R. Darrow, ed.), New Orleans.

    Google Scholar 

  • Lettovský, L., Johnson, E., and Nemhauser, G. (2000). Airline crew recovery. Transportation Science, 34:337–348.

    Article  Google Scholar 

  • Listes, O. and Dekker, R. (2003). A scenario aggregation based approach for determining a robust airline fleet composition. Technical Report EI 2002-17, Rotterdam School of Economics.

    Google Scholar 

  • Lohatepanont, M. and Barnhart, C. (2002). Airline schedule planning: Integrated models and algorithms for schedule design and fleet assignment. Technical Report, Massachusetts Institute of Technology.

    Google Scholar 

  • Løve, M., Sørensen, K., Larsen, J., and Clausen, J. (2002). Disruption management for an airline-rescheduling of aircraft. In: Applications of Evolutionary Computing: Evo Workshops 2002 (S. Cagnoni, J. Gottlieb, E. Hart, M. Middendorf, and G. Raidl, eds.), volume 2279, Lecture Notes in Computer Science, pp. 315–324, Springer-Verlag Heidelberg.

    Google Scholar 

  • Lučić, P. and Teodorović, D. (1999). Simulated annealing for the multi-objective aircrew rostering problem. Transportation Research Part A, 33:19–45.

    Google Scholar 

  • Makri, A. and Klabjan, D. (2004). A new pricing scheme for airline crew scheduling. INFORMS Journal on Computing, 16:56–67.

    Article  Google Scholar 

  • Marsten, R. (1994). Crew planning at Delta Airlines. Presentation in: XV Mathematical Programming Symposium, Ann Arbor.

    Google Scholar 

  • Marsten, R., Subramanian, R., and Gibbons, L. (1996). Junior analyst extraordinare (JANE): Route development at Delta Air Lines. In: AGIFORS Proceedings.

    Google Scholar 

  • Martin, R. (1999). Large Scale Linear and Integer Optimization: A Unified Approach, Kluwer Academic Publishers.

    Google Scholar 

  • Mercier, A., Cordeau, J.-F., and Soumis, F. (2003). A computational study of Benders decomposition for the integrated aircraft routing and crew scheduling problem. Les Cahiers du GERAD G-2003-48, HEC, Montréal, Canada.

    Google Scholar 

  • Minoux, M. (1984). Column generation techniques in combinatorial optimization: A new application to crew pairing problems. In: Proceedings XXIVth AGIFORS Symposium.

    Google Scholar 

  • Minoux, M. (1986). Mathematical Programming: Theory and Algorithms, Wiley-Interscience.

    Google Scholar 

  • Paoletti, B., Cappelletti, S., and Lenner, C. (2000). Operations research models for the optimization of aircraft rotation and routing in the integrated resources management process. In: Handbook of Airline Operations (G. Butler and M. Keller, eds.), pp. 285–308, McGraw-Hill.

    Google Scholar 

  • Rexing, B., Barnhart, C., Kniker, T., Jarrah, A., and Krishnamurthy, N. (2000). Airline fleet assignment with time windows. Transportation Science, 34:1–20.

    Article  Google Scholar 

  • Rosenberger, J., Johnson, E., and Nemhauser, G. (2001). Rerouting aircraft for airline recovery. Transportation Science, 37:408–421.

    Article  Google Scholar 

  • Rosenberger, J., Johnson, E., and Nemhauser, G. (2004). A robust fleet assignment model with hub isolation and short cycles. Transportation Science, 38:357–368.

    Article  Google Scholar 

  • Rushmeier, R. and Kontogiorgis, S. (1997). Advances in the optimization of airline fleet assignment. Transportation Science, 31:159–169.

    Google Scholar 

  • Ryan, D. and Foster, B. (1981). An integer programming approach to scheduling. In: Computer Scheduling of Public Transport Urban Passenger Vehicle and Crew Scheduling (A. Wren, ed.), pp. 269–280, Elsevier Science B.V.

    Google Scholar 

  • Schaefer, A., Johnson, E., Kleywegt, A., and Nemhauser, G. (2000). Airline crew scheduling under uncertainty. Technical Report TLI-01-01, Georgia Institute of Technology.

    Google Scholar 

  • Sohoni, M. and Johnson, E. (2002a). Operational airline reserve crew planning. Technical Report, The Logistics Institute, Georgia Institute of Technology.

    Google Scholar 

  • Sohoni, M. and Johnson, E. (2002b). An optimization approach to pilot recurrent training schedule. Technical Report, The Logistics Institute, Georgia Institute of Technology.

    Google Scholar 

  • Sohoni, M., Johnson, E., and Bailey, G. (2003). Long range reserve crew manpower planning. Technical Report, The Logistics Institute, Georgia Institute of Technology.

    Google Scholar 

  • Song, M., Wei, G., and Yu, G. (1998). A decision support framework for crew management during airline irregular operations. In: Operations Research in the Airline Industry (G. Yu, ed.), pp. 260–286, Kluwer Academic Publishers.

    Google Scholar 

  • Sriram, C. and Haghani, A. (2003). An optimization model for aircraft maintenance scheduling and re-assignment. Transportation Research Part A, 37:29–48.

    Google Scholar 

  • Stojković, G., Soumis, M., and Desrosiers, J. (1998). The operational airline crew scheduling problem. Transportation Science, 32:232–245.

    Google Scholar 

  • Stojković, M. and Soumis, F. (2001). An optimization model for the simultaneous operational flight and pilot scheduling problem. Management Science, 47: 1290–1305.

    Article  Google Scholar 

  • Stojković, M. and Soumis, F. (2003). The operational flight and multicrew scheduling problem. Les Cahiers du GERAD G-2000-27, HEC, Montréal, Canada.

    Google Scholar 

  • Talluri, K. (1996). Swapping applications in a daily airline fleet assignment. Transportation Science, 30: pp. 237–248.

    MATH  Google Scholar 

  • Teodorović, D. and Stojković, G. (1990). Model for operational daily airline scheduling. Transportation Planning Technology, 14:273–285.

    Google Scholar 

  • The Airline Group of the International Federation of Operational Research Societies (AGIFORS). http://www.agifors.org.

    Google Scholar 

  • Thengvall, B., Bard, J., and Yu, G. (2000). Balancing user preferences for aircraft schedule recovery during irregular operations. IIE Transactions, 32:181–193.

    Article  Google Scholar 

  • Thengvall, B., Bard, J., and Yu, G. (2003). A bundle algorithm approach for the aircraft schedule recovery problem during hub closures. Transportation Science, 37:392–407.

    Article  Google Scholar 

  • van Ryzin, G. and Talluri, K. (2002). Revenue management. In: Handbook of Transportation Science (R. Hall, ed.), pp. 599–661, Kluwer Academic Publishers.

    Google Scholar 

  • Vance, P., Atamtürk, A., Barnhart, C., Gelman, E., Johnson, E., Krishna, A., Mahidhara, D., Nemhauser, G., and Rebello, R. (1997). A heuristic branch-and-price approach for the airline crew pairing problem. Technical Report LEC-97-06, Georgia Institute of Technology.

    Google Scholar 

  • Wei, G. and Yu, G. (1997). Optimization model and algorithm for crew management during airline irregular operations. Journal of Combinatorial Optimization, 1:305–321.

    Article  Google Scholar 

  • Yan, S. and Lin, C. (1997). Airline scheduling for the temporary closure of airports. Transportation Science, 31:72–82.

    Google Scholar 

  • Yan, S. and Tseng, C. (2002). A passenger demand model for airline flight scheduling and fleet routing. Computers and Operations Research, 29:1559–1581.

    Article  Google Scholar 

  • Yan, S. and Wang, C. (2001). The planning of aircraft routes and flight frequencies in an airline network operations. Journal of Advanced Transportation, 35:33–46.

    Article  MathSciNet  Google Scholar 

  • Yan, S. and Young, H. (1996). A decision support framework for multi-fleet routing and multi-stop flight scheduling. Transportation Research Part A, 30:379–398.

    CAS  Google Scholar 

  • Yen, J. and Birge, J. (2000). A stochastic programming approach to the airline crew scheduling problem. Technical Report, University of Washington.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Klabjan, D. (2005). Large-Scale Models in the Airline Industry. In: Desaulniers, G., Desrosiers, J., Solomon, M.M. (eds) Column Generation. Springer, Boston, MA. https://doi.org/10.1007/0-387-25486-2_6

Download citation

Publish with us

Policies and ethics