Skip to main content

Neuroantigens in EAE

Myelin genes, proteins and non-protein antigens

  • Chapter
Experimental Models of Multiple Sclerosis
  • 2192 Accesses

Abstract

This chapter reviews briefly the biology of myelin and describes the major CNS myelin proteins, the potential neuroantigens in EAE. The genetics of the principal myelin proteins are also discussed. Myelin glycolipids with potential role in CNS demyelinating disease and the enzymes involved in their synthesis are also reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baumann, N. and D. Pham-Dinh, Biology of oligodendrocyte and myelin in the mammalian central nervous system. Physiol Rev, 2001. 81(2): p. 871–927.

    PubMed  CAS  Google Scholar 

  2. Balice-Gordon, R.J., L.J. Bone, and S.S. Scherer, Functional gap junctions in the schwann cell myelin sheath. J Cell Biol, 1998. 142(4): p. 1095–104.

    PubMed  CAS  Google Scholar 

  3. Wood, P. and R.P. Bunge, The biology of the oligodendrocyte, in Oligodendroglia: Advances in Neurochemistry, W.T. Norton, Editor. 1984, Plenum Press: New York. p. 1–46.

    Google Scholar 

  4. Bhat, M.A., J.C. Rios, Y. Lu, G.P. Garcia-Fresco, W. Ching, M. St Martin, J. Li, S. Einheber, M. Chesler, J. Rosenbluth, J.L. Salzer, and H.J. Bellen, Axon-glia interactions and the domain organization of myelinated axons requires neurexin IV/Caspr/Paranodin. Neuron, 2001. 30(2): p. 369–83.

    PubMed  CAS  Google Scholar 

  5. Charles, P., S. Tait, C. Faivre-Sarrailh, G. Barbin, F. Gunn-Moore, N. Denisenko-Nehrbass, A.M. Guennoc, J.A. Girault, P.J. Brophy, and C. Lubetzki, Neurofascin is a glial receptor for the paranodin/Caspr-contactin axonal complex at the axoglial junction. Curr Biol, 2002. 12(3): p. 217–20.

    PubMed  CAS  Google Scholar 

  6. Scherer, S.S. and EJ. Arroyo, Recent progress on the molecular organization of myelinated axons. J Peripher Nerv Syst, 2002. 7(1): p. 1–12.

    PubMed  CAS  Google Scholar 

  7. Baker, M.D., Axonal flip-flops and oscillators. Trends Neurosci, 2000. 23(11): p. 514–9.

    PubMed  CAS  Google Scholar 

  8. Baker, M.D., Electrophysiology of mammalian Schwann cells. Prog Biophys Mol Biol, 2002. 78(2–3): p. 83–103.

    PubMed  CAS  Google Scholar 

  9. Rumsby, M.G., Organization and structure in central-nerve myelin. Biochem Soc Trans, 1978. 6(2): p. 448–62.

    PubMed  CAS  Google Scholar 

  10. Norton, W.T. and W. Cammer, Isolation and characterization of myelin, in Myelin, P. Morrell, Editor. 1984, Plenum Press: New York. p. 531.

    Google Scholar 

  11. Sheikh, K.A., J. Sun, Y. Liu, H. Kawai, T.O. Crawford, R.L. Proia, J.W. Griffin, and R.L. Schnaar, Mice lacking complex gangliosides develop Wallerian degeneration and myelination defects. Proc Natl Acad Sci U S A, 1999. 96(13): p. 7532–7.

    PubMed  CAS  Google Scholar 

  12. Vyas, A.A., H.V. Patel, S.E. Fromholt, M. Heffer-Lauc, K.A. Vyas, J. Dang, M. Schachner, and R.L. Schnaar, Gangliosides are functional nerve cell ligands for myelin-associated glycoprotein (MAG), an inhibitor of nerve regeneration. Proc Natl Acad Sci U S A, 2002. 99(12): p. 8412–7.

    PubMed  CAS  Google Scholar 

  13. Benjamins, J.A., K. Miller, and G.M. McKhann, Myelin subfractions in developing rat brain: characterization and sulphatide metabolism. J Neurochem, 1973. 20(6): p. 1589–603.

    PubMed  CAS  Google Scholar 

  14. Shimomura, K., S. Yahara, Y. Kishimoto, and J.A. Benjamins, Metabolism of cerebrosides and sulfatides in subcellular fractions of developing rat brain. Biochim Biophys Acta, 1984. 795(2): p. 265–70.

    PubMed  CAS  Google Scholar 

  15. Stahl, N., H. Jurevics, P. Morell, K. Suzuki, and B. Popko, Isolation, characterization, and expression of cDNA clones that encode rat UDP-galactose: ceramide galactosyltransferase. J Neurosci Res, 1994. 38(2): p. 234–42.

    PubMed  CAS  Google Scholar 

  16. Burkart, T., L. Caimi, H.P. Siegrist, N.N. Herschkowitz, and U.N. Wiesmann, Vesicular transport of sulfatide in the myelinating mouse brain. Functional association with lysosomes? J Biol Chem, 1982. 257(6): p. 3151–6.

    PubMed  CAS  Google Scholar 

  17. Simons, M., E.M. Kramer, C. Thiele, W. Stoffel, and J. Trotter, Assembly of Myelin by Association of Proteolipid Protein with Cholesterol-and Galactosylceramide-rich Membrane Domains. J Cell Biol, 2000. 151(1): p. 143–154.

    PubMed  CAS  Google Scholar 

  18. Lee, A.G., Myelin: Delivery by raft. Curr Biol, 2001. 11(2): p. R60–2.

    PubMed  CAS  Google Scholar 

  19. Coetzee, T., N. Fujita, J. Dupree, R. Shi, A. Blight, K. Suzuki, and B. Popko, Myelination in the absence of galactocerebroside and sulfatide: normal structure with abnormal function and regional instability. Cell, 1996. 86(2): p. 209–19.

    PubMed  CAS  Google Scholar 

  20. Dupree, J.L., T. Coetzee, K. Suzuki, and B. Popko, Myelin abnormalities in mice deficient in galactocerebroside and sulfatide. J Neurocytol, 1998. 27(9): p. 649–59.

    PubMed  CAS  Google Scholar 

  21. Marcus, J. and B. Popko, Galactolipids are molecular determinants of myelin development and axo-glial organization. Biochim Biophys Acta, 2002. 1573(3): p. 406–13.

    PubMed  CAS  Google Scholar 

  22. Ishibashi, T., J.L. Dupree, K. Ikenaka, Y. Hirahara, K. Honke, E. Peles, B. Popko, K. Suzuki, H. Nishino, and H. Baba, A myelin galactolipid, sulfatide, is essential for maintenance of ion channels on myelinated axon but not essential for initial cluster formation. J Neurosci, 2002. 22(15): p. 6507–6514.

    PubMed  CAS  Google Scholar 

  23. Honke, K., Y. Hirahara, J. Dupree, K. Suzuki, B. Popko, K. Fukushima, J. Fukushima, T. Nagasawa, N. Yoshida, Y. Wada, and N. Taniguchi, Paranodal junction formation and spermatogenesis require sulfoglycolipids. Proc Nat Acad Sci Usa, 2002. 99(7): p. 4227–4232.

    PubMed  CAS  Google Scholar 

  24. D’Adamo, A.F., Jr., J.C. Smith, and C. Woiler, The occurrence of N-acetylaspartate amidohydrolase (aminoacylase II) in the developing rat. J Neurochem, 1973. 20(4): p. 1275–8.

    PubMed  CAS  Google Scholar 

  25. Hagenfeldt, L., I. Bollgren, and N. Venizelos, N-acetylaspartic aciduria due to aspartoacylase deficiency—a new aetiology of childhood leukodystrophy. J Inherit Metab Dis, 1987: p. 135–41.

    Google Scholar 

  26. Martin, E., A. Capone, J. Schneider, J. Hennig, and T. Thiel, Absence of N-acetylaspartate in the human brain: impact on neurospectroscopy? Ann Neurol, 2001. 49(4): p. 518–21.

    PubMed  CAS  Google Scholar 

  27. Kaul, R., G.P. Gao, K. Balamurugan, and R. Matalon, Cloning of the human aspartoacylase cDNA and a common missense mutation in Canavan disease. Nat Genet, 1993. 5(2): p. 118–23.

    PubMed  CAS  Google Scholar 

  28. Burri, R., C. Steffen, and N. Herschkowitz, N-acetyl-L-aspartate is a major source of acetyl groups for lipid synthesis during rat brain development. Dev Neurosci, 1991. 13(6): p. 403–11.

    PubMed  CAS  Google Scholar 

  29. Kirmani, B.F., D.M. Jacobowitz, A.T. Kallarakal, and M.A. Namboodiri, Aspartoacylase is restricted primarily to myelin synthesizing cells in the CNS: therapeutic implications for Canavan disease. Brain Res Mol Brain Res, 2002. 107(2): p. 176–82.

    PubMed  CAS  Google Scholar 

  30. Kirmani, B.F., D.M. Jacobowitz, and M.A. Namboodiri, Developmental increase of aspartoacylase in oligodendrocytes parallels CNS myelination. Brain Res Dev Brain Res, 2003. 140(1): p. 105–15.

    PubMed  CAS  Google Scholar 

  31. Garbern, J., K. Jjajj, G. Jayasundera, and R. Matalon. Aspartoacylase, the Hydrolytic Enzyme for N-Acetylaspartate, Is an Oligodendrocyte Protein: Implications for Myelination. in Neurology. 2003. Honolulu, HI.

    Google Scholar 

  32. Chakraborty, G., P. Mekala, D. Yahya, G. Wu, and R.W. Ledeen, Intraneuronal N-acetylaspartate supplies acetyl groups for myelin lipid synthesis: evidence for myelin-associated aspartoacylase. J Neurochem, 2001. 78(4): p. 736–45.

    PubMed  CAS  Google Scholar 

  33. Barker, P.B., N-Acetyl Aspartate-A neuronal marker? Ann Neurol, 2001. 49: p. 423–24.

    PubMed  CAS  Google Scholar 

  34. Milde, S., C. Viebahn, and C. Kirchner, Proteolipid protein 2 mRNA is expressed in the rabbit embryo during gastrulation. Mech Dev, 2001. 106(1–2): p. 129–32.

    PubMed  CAS  Google Scholar 

  35. Tenenbaum, D. and J. Folch-Pi, The preparation and characterization of water-soluble proteolipid protein from bovine brain white matter. Biochimica et Biophysica Acta, 1966. 115(1): p. 141–7.

    PubMed  CAS  Google Scholar 

  36. Griffiths, I.R., P. Montague, and P. Dickinson, The proteolipid protein gene. Neuropathology & Applied Neurobiology, 1995. 21(2): p. 85–96.

    CAS  Google Scholar 

  37. Greer, J.M. and M.B. Lees, Myelin proteolipid protein—the first 50 years. Int J Biochem Cell Biol, 2002. 34(3): p. 211–5.

    PubMed  CAS  Google Scholar 

  38. Gow, A., Redefining the lipophilin family of proteolipid proteins. J Neurosci Res, 1997. 50(5): p. 659–64.

    PubMed  CAS  Google Scholar 

  39. Laursen, R.A., M. Samiullah, and M.B. Lees, The structure of bovine brain myelin proteolipid and its organization in myelin. Proc Natl Acad Sci U S A, 1984. 81(9): p. 2912–6.

    PubMed  CAS  Google Scholar 

  40. Popot, J.-L., D. Pham-Dinh, and A. Dautigny, Major myelin proteolipid: the 4-α-helix topology. Journal of Membrane Biology, 1991. 120: p. 233–246.

    PubMed  CAS  Google Scholar 

  41. Inouye, H. and D.A. Kirschner, Membrane topology of PLP in CNS myelin: evaluation of models. Neurochemical Research, 1994. 19(8): p. 975–81.

    PubMed  CAS  Google Scholar 

  42. Pham-Dinh, D., M.C. Birling, G. Roussel, A. Dautigny, and J.L. Nussbaum, Proteolipid DM-20 predominates over PLP in peripheral nervous system. Neuroreport, 1991. 2(2): p. 89–92.

    PubMed  CAS  Google Scholar 

  43. Scherer, S.S., H.H. Vogelbacker, and J. Kamholz, Axons modulate the expression of proteolipid protein in the CNS. J Neurosci Res, 1992. 32(2): p. 138–48.

    PubMed  CAS  Google Scholar 

  44. Townsend, L.E., D. Agrawal, J.A. Benjamins, and H.C. Agrawal, In vitro acylation of rat brain myelin proteolipid protein. Journal of Biological Chemistry, 1982. 257(16): p. 9745–50.

    PubMed  CAS  Google Scholar 

  45. Agrawal, H.C, C.L. Randle, and D. Agrawal, In vivo acylation of rat brain myelin proteolipid protein. Journal of Biological Chemistry, 1982. 257(8): p. 4588–92.

    PubMed  CAS  Google Scholar 

  46. Bizzozero, O.A., S.P. Malkoski, C. Mobarak, H.A. Bixler, and J.E. Evans, Mass-spectrometric analysis of myelin proteolipids reveals new features of this family of palmitoylated membrane proteins. J Neurochem, 2002. 81(3): p. 636–45.

    PubMed  CAS  Google Scholar 

  47. Yamada, M., A. Ivanova, Y. Yamaguchi, M.B. Lees, and K. Ikenaka, Proteolipid protein gene product can be secreted and exhibit biological activity during early development. J Neurosci, 1999. 19(6): p. 2143–51.

    PubMed  CAS  Google Scholar 

  48. Boison, D. and W. Stoffel, Disruption of the compacted myelin sheath of axons of the central nervous system in proteolipid protein-deficient mice. Proceedings of the National Academy of Sciences of the United States of America, 1994. 91(24): p. 11709–13.

    PubMed  CAS  Google Scholar 

  49. Klugmann, M., M.H. Schwab, A. Pühlhofer, A. Schneider, F. Zimmermann, I.R. Griffiths, and K.-A. Nave, Assembly of CNS myelin in the absence of proteolipid protein. Neuron, 1997. 18(1): p. 59–70.

    PubMed  CAS  Google Scholar 

  50. Knapp, P.E., Proteolipid Protein: Is it more than just a structural component of myelin? Developmental Neuroscience, 1996. 18(4): p. 297–308.

    PubMed  CAS  Google Scholar 

  51. Griffiths, I., M. Klugmann, T. Anderson, D. Yool, C. Thomson, M.H. Schwab, A. Schneider, F. Zimmermann, M. McCulloch, N. Nadon, and K.-A. Nave, Axonal swellings and degeneration in mice lacking the major proteolipid of myelin. Science, 1998. 280: p. 1610–1613.

    PubMed  CAS  Google Scholar 

  52. Garbern, J.Y., D.A. Yool, G.J. Moore, I.B. Wilds, M.W. Faulk, M. Klugmann, K.A. Nave, E.A. Sistermans, M.S. van der Knaap, T.D. Bird, M.E. Shy, J.A. Kamholz, and I.R. Griffiths, Patients lacking the major CNS myelin protein, proteolipid protein 1, develop length-dependent axonal degeneration in the absence of demyelination and inflammation. Brain, 2002. 125(Pt 3): p. 551–61.

    PubMed  Google Scholar 

  53. Garbern, J.Y., F. Cambi, X.M. Tang, A.A. Sima, J.M. Vallat, E.P. Bosch, R. Lewis, M. Shy, J. Sohi, G. Kraft, K.L. Chen, I. Joshi, D.G. Leonard, W. Johnson, W. Raskind, S.R. Dlouhy, V. Pratt, M.E. Hodes, T. Bird, and J. Kamholz, Proteolipid protein is necessary in peripheral as well as central myelin. Neuron, 1997. 19(1): p. 205–18.

    PubMed  CAS  Google Scholar 

  54. Willard, H.F. and J.R. Riordan, Assignment of the gene for myelin proteolipid protein to the X chromosome: implications for X-linked myelin disorders. Science, 1985. 230(4728): p. 940–2.

    PubMed  CAS  Google Scholar 

  55. Milner, R.J., C. Lai, K.A. Nave, D. Lenoir, J. Ogata, and J.G. Sutcliffe, Nucleotide sequences of two mRNAs for rat brain myelin proteolipid protein. Cell, 1985. 42(3): p. 931–9.

    PubMed  CAS  Google Scholar 

  56. Nave, K.A., C. Lai, F.E. Bloom, and R J. Milner, Splice site selection in the proteolipid protein (PLP) gene transcript and primary structure of the DM-20 protein of central nervous system myelin. Proc Natl Acad Sci U S A, 1987. 84(16): p. 5665–9.

    PubMed  CAS  Google Scholar 

  57. Yan, Y., C. Lagenaur, and V. Narayanan, Molecular cloning of M6: identification of a PLP/DM20 gene family. Neuron, 1993. 11(3): p. 423–31.

    PubMed  CAS  Google Scholar 

  58. Garbern, J., PLP related diseases, in Geneclinics, R. Pagon, Editor. 2002.

    Google Scholar 

  59. Laatch, R.H., M.W. Kies, S. Gordon, and E.C. Alvord, Jr., The encephalitogenic activity of myein isolated by ultracentrifugation. J Exp Med, 1962. 115: p. 777.

    Google Scholar 

  60. Kies, M.W., R.E. Martenson, and G.E. Deibler, Myelin basic proteins. Adv Exp Med Biol, 1972. 32(0): p. 201–14.

    PubMed  CAS  Google Scholar 

  61. de Ferra, F., H. Engh, L. Hudson, J. Kamholz, C. Puckett, S. Molineaux, and R.A. Lazzarini, Alternative splicing accounts for the four forms of myelin basic protein. Cell, 1985. 43(3 Pt 2): p. 721–7.

    PubMed  Google Scholar 

  62. Kamholz, J., F. de Ferra, C. Puckett, and R. Lazzarini, Identification of three forms of human myelin basic protein by cDNA cloning. Proc Natl Acad Sci U S A, 1986. 83(13): p. 4962–6.

    PubMed  CAS  Google Scholar 

  63. Reyes, S.D. and A.T. Campagnoni, Two separate domains in the golli myelin basic proteins are responsible for nuclear targeting and process extension in transfected cells. J Neurosci Res, 2002. 69(5): p. 587–96.

    PubMed  CAS  Google Scholar 

  64. Kimura, M., M. Sato, A. Akatsuka, S. Nozawa-Kimura, R. Takahashi, M. Yokoyama, T. Nomura, and M. Katsuki, Restoration of myelin formation by a single type of myelin basic protein in transgenic shiverer mice. Proc Natl Acad Sci U S A, 1989. 86(14): p. 5661–5.

    PubMed  CAS  Google Scholar 

  65. Pribyl, T.M., C.W. Campagnoni, K. Kampf, T. Kashima, V.W. Handley, J. McMahon, and A.T. Campagnoni, The human myelin basic protein gene is included within a 179-kilobase transcription unit: expression in the immune and central nervous systems. Proc Natl Acad Sci U S A, 1993. 90(22): p. 10695–9.

    PubMed  CAS  Google Scholar 

  66. Ulmer, J.B. and P.E. Braun, In vivo phosphorylation of myelin basic proteins in developing mouse brain: evidence that phosphorylation is an early event in myelin formation. Dev Neurosci, 1983. 6(6): p. 345–55.

    PubMed  CAS  Google Scholar 

  67. Yamamori, C, M. Terashima, H. Ishino, and M. Shimoyama, ADP-ribosylation of myelin basic protein and inhibition of phospholipid vesicle aggregation. Enzyme Protein, 1994. 48(4): p. 202–12.

    PubMed  CAS  Google Scholar 

  68. Boggs, J.M., P.M. Yip, G. Rangaraj, and E. Jo, Effect of posttranslational modifications to myelin basic protein on its ability to aggregate acidic lipid vesicles. Biochemistry, 1997. 36(16): p. 5065–71.

    PubMed  CAS  Google Scholar 

  69. Boggs, J.M., G. Rangaraj, K.M. Koshy, C. Ackerley, D.D. Wood, and M.A. Moscarello, Highly deiminated isoform of myelin basic protein from multiple sclerosis brain causes fragmentation of lipid vesicles. J Neurosci Res, 1999. 57(4): p. 529–35.

    PubMed  CAS  Google Scholar 

  70. Kline, A.D., M.E. White, R. Wapner, K. Rojas, L.G. Biesecker, J. Kamholz, E.H. Zackai, M. Muenke, C.I. Scott, Jr., and J. Overhauser, Molecular analysis of the 18q-syndrome—and correlation with phenotype. Am J Hum Genet, 1993. 52(5): p. 895–906.

    PubMed  CAS  Google Scholar 

  71. Loevner, L.A., R.M. Shapiro, R.I. Grossman, J. Overhauser, and J. Kamholz, White matter changes associated with deletions of the long arm of chromosome 18 (18q-syndrome): a dysmyelinating disorder? AJNR Am J Neuroradiol, 1996. 17(10): p. 1843–8.

    PubMed  CAS  Google Scholar 

  72. Mahr, R.N., P.J. Moberg, J. Overhauser, G. Strathdee, J. Kamholz, L.A. Loevner, H. Campbell, E.H. Zackai, M.E. Reber, D.P. Mozley, L. Brown, B.I. Turetsky, and R.M. Shapiro, Neuropsychiatry of 18q-syndrome. Am J Med Genet, 1996. 67(2): p. 172–8.

    PubMed  CAS  Google Scholar 

  73. Bird, T.D., D.F. Farrell, and S.M. Sumi, Brain lipid composition of the shiverer mouse: (genetic defect in myelin development). J Neurochem, 1978. 31(1): p. 387–91.

    PubMed  CAS  Google Scholar 

  74. Rosenbluth, J., Central myelin in the mouse mutant shiverer. J Comp Neurol, 1980. 194(3): p. 639–48.

    PubMed  CAS  Google Scholar 

  75. Roach, A., N. Takahashi, D. Pravtcheva, F. Ruddle, and L. Hood, Chromosomal mapping of mouse myelin basic protein gene and structure and transcription of the partially deleted gene in shiverer mutant mice. Cell, 1985. 42(1): p. 149–55.

    PubMed  CAS  Google Scholar 

  76. Kimura, M., H. Inoko, M. Katsuki, A. Ando, T. Sato, T. Hirose, H. Takashima, S. Inayama, H. Okano, K. Takamatsu, and et al., Molecular genetic analysis of myelin-deficient mice: shiverer mutant mice show deletion in gene(s) coding for myelin basic protein. J Neurochem, 1985. 44(3): p. 692–6.

    PubMed  CAS  Google Scholar 

  77. Akowitz, A.A., E. Barbarese, K. Scheld, and J.H. Carson, Structure and expression of myelin basic protein gene sequences in the mld mutant mouse: reiteration and rearrangement of the MBP gene. Genetics, 1987. 116(3): p. 447–64.

    PubMed  CAS  Google Scholar 

  78. O’Connor, L.T., B.D. Goetz, J.M. Kwiecien, K.H. Delaney, A.L. Fletch, and I.D. Duncan, Insertion of a retrotransposon in Mbp disrupts mRNA splicing and myelination in a new mutant rat. J Neurosci, 1999. 19(9): p. 3404–13.

    PubMed  CAS  Google Scholar 

  79. Inouye, H., A.L. Ganser, and D.A. Kirschner, Shiverer and normal peripheral myelin compared: basic protein localization, membrane interactions, and lipid composition. J Neurochem, 1985. 45(6): p. 1911–22.

    PubMed  CAS  Google Scholar 

  80. Uschkureit, T., O. Sporkel, J. Stracke, H. Bussow, and W. Stoffel, Early onset of axonal degeneration in double (plp-/-mag-/-) and hypomyelinosis in triple (plp-/-mbp-/-mag-/-) mutant mice. J Neurosci, 2000. 20(14): p. 5225–33.

    PubMed  CAS  Google Scholar 

  81. Rosenbluth, J., Axoglial junctions in the mouse mutant Shiverer. Brain Res, 1981. 208(2): p. 283–97.

    PubMed  CAS  Google Scholar 

  82. Brady, S.T., A.S. Witt, L.L. Kirkpatrick, S.M. de Waegh, C. Readhead, P.H. Tu, and V.M. Lee, Formation of compact myelin is required for maturation of the axonal cytoskeleton. J Neurosci, 1999. 19(17): p. 7278–88.

    PubMed  CAS  Google Scholar 

  83. Wood, D.D., G.J. Vella, and M.A. Moscarello, Interaction between human myelin basic protein and lipophilin. Neurochem Res, 1984. 9(10): p. 1523–31.

    PubMed  CAS  Google Scholar 

  84. Wells, M.R. and T.J. Sprinkle, Purification of rat 2′,3′-cyclic nucleotide 3′-phosphodiesterase. J Neurochem, 1981. 36(2): p. 633–9.

    PubMed  CAS  Google Scholar 

  85. Sprinkle, T.J., M.R. Wells, F.A. Garver, and D.B. Smith, Studies on the Wolfgram high molecular weight CNS myelin proteins: relationship to 2′,3′-cyclic nucleotide 3′-phosphodiesterase. J Neurochem, 1980. 35(5): p. 1200–8.

    PubMed  CAS  Google Scholar 

  86. Sprinkle, T.J., HJ. Sheedlo, T.B. Buxton, and J.P. Rissing, Immunochemical identification of 2′, 3′-cyclic nucleotide 3′-phosphodiesterase in central and peripheral nervous system myelin, the Wolf gram protein fraction, and bovine oligodendrocytes. J Neurochem, 1983. 41(6): p. 1664–71.

    PubMed  CAS  Google Scholar 

  87. Braun, P.E., F. Sandillon, A. Edwards, J.M. Matthieu, and A. Privat, Immunocytochemical localization by electron microscopy of 2′3′-cyclic nucleotide 3′-phosphodiesterase in developing oligodendrocytes of normal and mutant brain. J Neurosci, 1988. 8(8): p. 3057–66.

    PubMed  CAS  Google Scholar 

  88. Scherer, S.S., P.E. Braun, J. Grinspan, E. Collarini, D.Y. Wang, and J. Kamholz, Differential regulation of the 2′,3′-cyclic nucleotide 3′-phosphodiesterase gene during oligodendrocyte development. Neuron, 1994. 12(6): p. 1363–75.

    PubMed  CAS  Google Scholar 

  89. Lappe-Siefke, C, S. Goebbels, M. Gravel, E. Nicksch, J. Lee, P.E. Braun, I.R. Griffiths, and K.A. Nave, Disruption of Cnpl uncouples oligodendroglial functions in axonal support and myelination. Nat Genet, 2003. 33(3): p. 366–74.

    PubMed  CAS  Google Scholar 

  90. Quarles, R.H., Glycoproteins of myelin sheaths. J Mol Neurosci, 1997. 8(1): p. 1–12.

    PubMed  CAS  Google Scholar 

  91. Quarles, R.H., Myelin sheaths: glycoproteins involved in their formation, maintenance and degeneration. Cell Mol Life Sci, 2002. 59(11): p. 1851–71.

    PubMed  CAS  Google Scholar 

  92. Montag, D., K.P. Giese, U. Bartsch, R. Martini, Y. Lang, H. Bluthmann, J. Karthigasan, D.A. Kirschner, E.S. Wintergerst, K.A. Nave, and et al., Mice deficient for the myelin-associated glycoprotein show subtle abnormalities in myelin. Neuron, 1994. 13(1): p. 22946.

    Google Scholar 

  93. Fruttiger, M., D. Montag, M. Schachner, and R. Martini, Crucial role for the myelin-associated glycoprotein in the maintenance of axon-myelin integrity. European Journal of Neuroscience, 1995. 7(3): p. 511–5.

    PubMed  CAS  Google Scholar 

  94. Lassmann, H., U. Bartsch, D. Montag, and M. Schachner, Dying-Back Oligodendrogliopathy: a Late Sequel Of Myelin-Associated Glycoprotein Deficiency. Glia, 1997. 19(2): p. 104–110.

    PubMed  CAS  Google Scholar 

  95. Bjartmar, C. and B.D. Trapp, Axonal and neuronal degeneration in multiple sclerosis: mechanisms and functional consequences. Curr Opin Neurol, 2001. 14(3): p. 271–8.

    PubMed  CAS  Google Scholar 

  96. Mukhopadhyay, G., P. Doherty, F.S. Walsh, P.R. Crocker, and M.T. Filbin, A novel role for myelin-associated glycoprotein as an inhibitor of axonal regeneration. Neuron, 1994. 13(3): p. 757–67.

    PubMed  CAS  Google Scholar 

  97. McKerracher, L. and M.J. Winton, Nogo on the go. Neuron, 2002. 36(3): p. 345–8.

    PubMed  CAS  Google Scholar 

  98. Simonen, M., V. Pedersen, O. Weinmann, L. Schnell, A. Buss, B. Ledermann, F. Christ, G. Sansig, H. van der Putten, and M.E. Schwab, Systemic deletion of the myelin-associated outgrowth inhibitor nogo-a improves regenerative and plastic responses after spinal cord injury. Neuron, 2003. 38(2): p. 201–11.

    PubMed  CAS  Google Scholar 

  99. Woolf, C.J., No nogo. Now where to go? Neuron, 2003. 38(2): p. 153–6.

    PubMed  CAS  Google Scholar 

  100. Zheng, B., C. Ho, S. Li, H. Keirstead, O. Steward, and M. Tessier-Lavigne, Lack of enhanced spinal regeneration in no go-deficient mice. Neuron, 2003. 38(2): p. 213–24.

    PubMed  CAS  Google Scholar 

  101. Kim, J.E., S. Li, T. GrandPre, D. Qiu, and S.M. Strittmatter, Axon regeneration in young adult mice lacking nogo-a/b. Neuron, 2003. 38(2): p. 187–99.

    PubMed  CAS  Google Scholar 

  102. Bronstein, J.M., P. Popper, P.E. Micevych, and D.B. Farber, Isolation and characterization of a novel oligodendrocyte-specific protein. Neurology, 1996. 47(3): p. 772–8.

    PubMed  CAS  Google Scholar 

  103. Gow, A., CM. Southwood, J.S. Li, M. Pariali, G.P. Riordan, S.E. Brodie, J. Danias, J.M. Bronstein, B. Kachar, and R.A. Lazzarini, CNS myelin and sertoli cell tight junction strands are absent in Osp/claudin-11 null mice. Cell, 1999. 99(6): p. 649–59.

    PubMed  CAS  Google Scholar 

  104. Linington, C, M. Webb, and P. Woodhams, A novel myelin associated glycoprotein defined by a mouse monoclonal antibody. J Neuroimmunol, 1984. 6: p. 387–396.

    Google Scholar 

  105. Gardinier, M.V., P. Amiguet, C. Linington, and J.M. Matthieu, Myelin/oligodendrocyte glycoprotein is a unique member of the immunoglobulin superfamily. J Neurosci Res, 1992. 33(1): p. 177–87.

    PubMed  CAS  Google Scholar 

  106. Johns, T.G. and C.C. Bernard, The structure and function of myelin oligodendrocyte glycoprotein. J Neurochem, 1999. 72(1): p. 1–9.

    PubMed  CAS  Google Scholar 

  107. Pham-Dinh, D., M.G. Mattei, J.L. Nussbaum, G. Roussel, P. Pontarotti, N. Roeckel, I.H. Mather, K. Artzt, K.F. Lindahl, and A. Dautigny, Myelin/oligodendrocyte glycoprotein is a member of a subset of the immunoglobulin superfamily encoded within the major histocompatibility complex. Proc Natl Acad Sci U S A, 1993. 90(17): p. 7990–4.

    PubMed  CAS  Google Scholar 

  108. Matthieu, J.M. and P. Amiguet, Myelin/oligodendrocyte glycoprotein expression during development in normal and myelin-deficient mice. Dev Neurosci, 1990. 12(4–5): p. 293–302.

    PubMed  CAS  Google Scholar 

  109. Abo, S., C.C. Bernard, M. Webb, T.G. Johns, A. Alafaci, L.D. Ward, R.J. Simpson, and N. Kerlero de Rosbo, Preparation of highly purified human myelin oligodendrocyte glycoprotein in quantities sufficient for encephalitogenicity and immunogenicity studies. Biochemistry & Molecular Biology International, 1993. 30(5): p. 945–58.

    CAS  Google Scholar 

  110. de Rosbo, N.K. and A. Ben-Nun, T-cell responses to myelin antigens in multiple sclerosis; relevance of the predominant autoimmune reactivity to myelin oligodendrocyte glycoprotein. J Autoimmun, 1998. 11(4): p. 287–99.

    PubMed  Google Scholar 

  111. Rash, J.E., T. Yasumura, K.G. Davidson, C.S. Furman, F.E. Dudek, and J.I. Nagy, Identification of cells expressing Cx43, Cx30, Cx26, Cx32 and Cx36 in gap junctions of rat brain and spinal cord. Cell Commun Adhes, 2001. 8(4–6): p. 315–20.

    PubMed  CAS  Google Scholar 

  112. Rash, J.E., T. Yasumura, F.E. Dudek, and J.I. Nagy, Cell-specific expression of connexins and evidence of restricted gap junctional coupling between glial cells and between neurons. J Neurosci, 2001. 21(6): p. 1983–2000.

    PubMed  CAS  Google Scholar 

  113. Scherer, S.S., Y.T. Xu, E. Nelles, K. Fischbeck, K. Willecke, and L.J. Bone, Connexin32-null mice develop demyelinating peripheral neuropathy. Glia, 1998. 24(1): p. 8–20.

    PubMed  CAS  Google Scholar 

  114. Stojkovic, T., P. Latour, A. Vandenberghe, J.F. Hurtevent, and P. Vermersch, Sensorineural deafness in X-linked Charcot-Marie-Tooth disease with connexin 32 mutation (R142Q). Neurology, 1999. 52(5): p. 1010–4.

    PubMed  CAS  Google Scholar 

  115. Paulson, H.L., J.Y. Garbern, T.F. Hoban, K.M. Krajewski, R.A. Lewis, K.H. Fischbeck, R.I. Grossman, R. Lenkinski, J.A. Kamholz, and M.E. Shy, Transient central nervous system white matter abnormality in X-linked Charcot-Marie-Tooth disease. Ann Neurol, 2002. 52(4): p. 429–34.

    PubMed  CAS  Google Scholar 

  116. Schelhaas, H.J., B.G. Van Engelen, A.A. Gabreels-Festen, G. Hageman, J.H. Vliegen, M.S. Van Der Knaap, and M.J. Zwarts, Transient cerebral white matter lesions in a patient with connexin 32 missense mutation. Neurology, 2002. 59(12): p. 2007–8.

    PubMed  CAS  Google Scholar 

  117. Takashima, H., M. Nakagawa, F. Umehara, K. Hirata, M. Suehara, H. Mayumi, K. Yoshishige, W. Matsuyama, M. Saito, M. Jonosono, K. Arimura, and M. Osame, Gap junction protein beta 1 (GJB1) mutations and central nervous system symptoms in X-linked Charcot-Marie-Tooth disease. Acta Neurol Scand, 2003. 107(1): p. 31–7.

    PubMed  CAS  Google Scholar 

  118. Bellen, H.J., Y. Lu, R. Beckstead, and M.A. Bhat, Neurexin IV, caspr and paranodin—novel members of the neurexin family: encounters of axons and glia. Trends Neurosci, 1998. 21(10): p. 444–9.

    PubMed  CAS  Google Scholar 

  119. Trapp, B.D. and G.J. Kidd, Axo-glial septate junctions. The maestro of nodal formation and myelination? [comment]. J Cell Biol, 2000. 150(3): p. F97–F100.

    PubMed  CAS  Google Scholar 

  120. Girault, J.A. and E. Peles, Development of nodes of Ranvier. Curr Opin Neurobiol, 2002. 12(5): p. 476–485.

    PubMed  CAS  Google Scholar 

  121. Collinson, J.M., D. Marshall, C.S. Gillespie, and P.J. Brophy, Transient expression of neurofascin by oligodendrocytes at the onset of myelinogenesis: implications for mechanisms of axon-glial interaction. Glia, 1998. 23(1): p. 11–23.

    PubMed  CAS  Google Scholar 

  122. Tait, S., F. Gunn-Moore, J.M. Collinson, J. Huang, C. Lubetzki, L. Pedraza, D.L. Sherman, D.R. Colman, and P.J. Brophy, An oligodendrocyte cell adhesion molecule at the site of assembly of the paranodal axo-glial junction [see comments]. J Cell Biol, 2000. 150(3): p. 657–66.

    PubMed  CAS  Google Scholar 

  123. Yamamoto, Y., R. Mizuno, T. Nishimura, Y. Ogawa, H. Yoshikawa, H. Fujimura, E. Adachi, T. Kishimoto, T. Yanagihara, and S. Sakoda, Cloning and expression of myelin-associated oligodendrocytic basic protein. A novel basic protein constituting the central nervous system myelin. Journal of Biological Chemistry, 1994. 269(50): p. 31725–30.

    PubMed  CAS  Google Scholar 

  124. Holz, A., N. Schaeren-Wiemers, C. Schaefer, U. Pott, R.J. Colello, and M.E. Schwab, Molecular and developmental characterization of novel cDNAs of the myelin-associated/oligodendrocytic basic protein. Journal of Neuroscience, 1996. 16(2): p. 467–77.

    PubMed  CAS  Google Scholar 

  125. Yool, D., P. Montague, M. McLaughlin, M.C. McCulloch, J.M. Edgar, K.A. Nave, R.W. Davies, I.R. Griffiths, and A.S. McCallion, Phenotypic analysis of mice deficient in the major myelin protein MOBP, and evidence for a novel Mobp isoform. Glia, 2002. 39(3): p. 256–67.

    PubMed  CAS  Google Scholar 

  126. Neusch, C, N. Rozengurt, R.E. Jacobs, H.A. Lester, and P. Kofuji, Kir4.1 potassium channel subunit is crucial for oligodendrocyte development and in vivo myelination. J Neurosci, 2001. 21(15): p. 5429–38.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Garbern, J. (2005). Neuroantigens in EAE. In: Lavi, E., Constantinescu, C.S. (eds) Experimental Models of Multiple Sclerosis. Springer, Boston, MA. https://doi.org/10.1007/0-387-25518-4_4

Download citation

Publish with us

Policies and ethics