Skip to main content

Part of the book series: Ecological Studies ((ECOLSTUD,volume 177))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams, J.M., H. Faure, L. Faure-Denard, J.M. McGlade, and F.I. Woodward. 1990. Increases in terrestrial carbon storage from the Last Glacial Maximum to the present. Nature 348:711–14.

    Article  Google Scholar 

  • Allen, L.H., Jr., E.C. Bisbal, K.J. Boote, and P.H. Jones. 1991. Soybean dry matter allocation under subambient and superambient levels of carbon dioxide. Agronomy Journal 83:875–83.

    Google Scholar 

  • Arp, W.J., B.G. Drake, W.T. Pockman, P.S. Curtis, and D.F. Whigham. 1993. Interactions between C3 and C4 salt marsh plant species during four years of exposure to elevated atmospheric CO2. Vegetatio 104/105:133–43.

    Article  Google Scholar 

  • Baker, J.T., L.H. Allen, Jr., K.J. Boote, P. Jones, and J.W. Jones. 1990. Rice photosynthesis and evapotranspiration in subambient, ambient, and superambient carbon dioxide concentrations. Agronomy Journal 82:834–40.

    Google Scholar 

  • Barnola, J.-M., D. Raynaud, Y.S. Korotkevich, and C. Lorius. 1987. Vostok ice core provides 160,000-year record of atmospheric CO2. Nature 329:408–18.

    Article  Google Scholar 

  • Bazzaz, F.A., D.D. Ackerly, F.I. Woodward, and L. Rochefort. 1992. CO2 enrichment and dependence of reproduction on density in an annual plant and a simulation of its population dynamics. Journal of Ecology 80:643–51.

    Google Scholar 

  • Bazzaz, F.A., M. Jasienski, S.C. Thomas, and P. Wayne. 1995. Microevolutionary responses in experimental populations of plants to CO2-enriched environments: Parallel results from two model systems. Proceedings of the National Academy of Sciences, USA 92:8161–65.

    Google Scholar 

  • Beerling, D.J., and W.G. Chaloner. 1993. Evolutionary responses of stomatal density to global CO2 change. Biological Journal of the Linnean Society 48:343–53.

    Article  Google Scholar 

  • Beerling, D.J., W.G. Chaloner, B. Huntley, J.A. Pearson, and M.J. Tooley. 1993. Stomatal density responds to the glacial cycle of environmental change. Proceedings of the Royal Society of London 251:133–38.

    Google Scholar 

  • Beerling, D.J., W.G. Chaloner, B. Huntley, J.A. Pearson, M.J. Tooley, and F.I. Woodward. 1992. Variations in the stomatal density of Salix herbacea L. under the changing atmospheric CO2 concentrations of late-and post-glacial time. Philosophical Transactions of the Royal Society of London 336:215–24.

    Google Scholar 

  • Beerling, D.J., and D.L. Royer. 2002. Reading a CO2 signal from fossil stomata. New Phytologist 153:387–97.

    Article  Google Scholar 

  • Beerling, D.J., and F.I. Woodward. 1993. Ecophysiological responses of plants to global environmental change since the Last Glacial Maximum. New Phytologist 125:641–48.

    Google Scholar 

  • Berner, R.A. 1994. Geocarb II: A revised model of atmospheric CO2 over Phanerozoic time. American Journal of Science 294:56–91.

    Google Scholar 

  • Bone, E., and A. Farres. 2001. Trends and rates of microevolution in plants. Genetica 112/113:165–82.

    Article  Google Scholar 

  • Boom, A., G. Mora, A.M. Cleef, and H. Hooghiemstra. 2001. High altitude C4 grasslands in the Northern Andes: Relicts from glacial conditions? Review of Palaeobotany and Palynology 115:147–60.

    Article  PubMed  Google Scholar 

  • Bradshaw, A.D., and T. McNeilly. 1991. Evolutionary response to global climatic change. Annals of Botany 67:5–14.

    Google Scholar 

  • Bugbee, B., B. Spanarkel, S. Johnson, O. Monje, and G. Koerner. 1994. CO2 crop growth enhancement and toxicity in wheat and rice. In Life sciences and space research XXV, Vol. 14, 257–67. Oxford: Pergamon Press.

    Google Scholar 

  • Bunce, J.A. 2001. Are annual plants adapted to the current atmospheric concentration of carbon dioxide? International Journal of Plant Science 162:1261–66.

    Article  Google Scholar 

  • Cannel, R.A., W.A. Brun, and D.N. Moss. 1969. A search for high net photosynthetic rate among soybean genotypes. Crop Science 9:840–41.

    Google Scholar 

  • Carter, D.R., and K.M. Peterson. 1983. Effects of a CO2-enriched atmosphere on the growth and competitive interaction of a C3 and C4 grass. Oecologia 58:188–93.

    Article  Google Scholar 

  • Case, A.L., P.S. Curtis, and A.A. Snow. 1998. Heritable variation in stomatal responses to elevated CO2 in wild radish, Raphanus raphanistrum (Brassicaceae). American Journal of Botany 85:253–58.

    Google Scholar 

  • Cerling, T.E., J.R. Ehleringer, and J.M. Harris. 1998. Carbon dioxide starvation, the development of C4 ecosystems, and mammalian evolution. Philosophical Transactions of the Royal Society of London 353:159–71.

    Article  PubMed  Google Scholar 

  • Cerling, T.E., J.M. Harris, B.J. MacFadden, M.G. Leakey, J. Quade, V. Eisenmann, and J.R. Ehleringer. 1997. Global vegetation change through the Miocene/Pliocene boundary. Nature 389:153–58.

    Article  Google Scholar 

  • Cerling, T.E., Y. Wang, and J. Quade. 1993 Expansion of C4 ecosystems as an indicator of global ecological change in the late Miocene. Nature 361:344–45.

    Article  Google Scholar 

  • Clifford, S.C., I.M. Stronach, A.D. Mohamed, S.N. Azam-Ali, and N.M.J. Crout. 1993. The effects of elevated atmospheric carbon dioxide and water stress on light interception, dry matter production and yield in stands of groundnut (Arachis hypogaea L.). Journal of Experimental Botany 44:1763–70.

    Google Scholar 

  • Coleman, J.S., and F.A. Bazzaz. 1992. Effects of CO2 and temperature on growth and resource use of co-occurring C3 and C4 annuals. Ecology 73:1244–59.

    Google Scholar 

  • Collatz, G.J., J.A. Berry, and J.S. Clark. 1998. Effects of climate and atmospheric CO2 partial pressure on the global distribution of C4 grasses: present, past, and future. Oecologia 114:441–54.

    Article  Google Scholar 

  • Connin, S.L., J. Betancourt, and J. Quade. 1998. Late Pleistocene C4 plant dominance and summer rainfall in the southwestern United States from isotopic study of herbivore teeth. Quaternary Research 50:179–93.

    Article  Google Scholar 

  • Cook, A.C., D.T. Tissue, S.W. Roberts, and W.C. Oechel. 1998. Effects of long-term elevated [CO2] from natural CO2 springs on Nardus stricta: Photosynthesis, biochemistry, growth, and phenology. Plant, Cell, and Environment 21:417–25.

    Google Scholar 

  • Cowling, S.A. 1999. Simulated effects of low atmospheric CO2 on structure and composition of North American vegetation at the Last Glacial Maximum. Global Ecology and Biogeography 8:81–93.

    Article  Google Scholar 

  • —. 2001. Plant carbon balance, evolutionary innovation and extinction in land plants. Global Change Biology 7:231–39.

    Article  Google Scholar 

  • Cowling, S.A., and R.F. Sage. 1998. Interactive effects of low atmospheric CO2 and elevated temperature on growth, photosynthesis and respiration in Phaseolus vulgaris. Plant, Cell, and Environment 21:427–35.

    Google Scholar 

  • Cowling, S.A., and M.T. Sykes. 1999. Physiological significance of low atmospheric CO2 for plant-climate interactions. Quaternary Research 52:237–42.

    Article  Google Scholar 

  • Crowley, T.J. 1995. Ice age terrestrial carbon changes revisited. Global Biogeochemical Cycle 9:377–89.

    Article  Google Scholar 

  • Curtis, P.S., D.J. Klus, S. Kalisz, and S.J. Tonsor. 1996. Intraspecific variation in CO2 responses in Raphanus raphanistrum and Plantago lanceolata: Assessing the potential for evolutionary change with rising atmospheric CO2. In Carbon dioxide, populations, and communities, ed. C. Körner and F.A. Bazzaz, 13–22. San Diego: Academic Press.

    Google Scholar 

  • Curtis, P.S., A.A. Snow, and A.S. Miller. 1994. Genotype-specific effects of elevated CO2 on fecundity in wild radish (Raphanus raphanistrum). Oecologia 97:100–105.

    Article  Google Scholar 

  • Curtis, P.S., and X. Wang. 1998. A meta-analysis of elevated CO2 effects on woody plant mass, form, and physiology. Oecologia 113:299–313.

    Article  Google Scholar 

  • Dippery, J.K., D.T. Tissue, R.B. Thomas, and B.R. Strain. 1995. Effects of low and elevated CO2 on C3 and C4 annuals. I. Growth and biomass allocation. Oecologia 101:13–20.

    Article  Google Scholar 

  • Ehleringer, J., and O. Björkman. 1977. Quantum yields for CO2 uptake in C3 and C4 plants. Dependence on temperature, CO2, and O2 concentration. Plant Physiology 59:86–90.

    Google Scholar 

  • Ehleringer, J.R., T.E. Cerling, and B.R. Helliker. 1997. C4 photosynthesis, atmospheric CO2, and climate. Oecologia 112:285–99.

    Article  Google Scholar 

  • Ehleringer, J.R., and R.K. Monson. 1993. Evolutionary and ecological aspects of photosynthetic pathway variation. Annual Review of Ecology and Systematics 24:411–39.

    Article  Google Scholar 

  • Ehleringer, J.R., R.F. Sage, L.B. Flanagan, and R.W. Pearcy. 1991. Climate change and the evolution of C4 photosynthesis. Trends in Ecology and Evolution 6:95–99.

    Article  Google Scholar 

  • Etterson, J.R., and R.G. Shaw. 2001. Constraint to adaptive evolution in response to global warming. Science 294:151–54.

    Article  PubMed  Google Scholar 

  • Fajer, E.D., M.D. Bowers, and F.A. Bazzaz. 1991. Performance and allocation patterns of the perennial herb, Plantago lanceolata, in response to simulated herbivory and elevated CO2 environments. Oecologia 87:37–42.

    Article  Google Scholar 

  • Garbutt, K., and F.A. Bazzaz. 1984. The effects of elevated CO2 on plants. III. Flower, fruit and seed production and abortion. New Phytologist 98:433–46.

    Google Scholar 

  • Gunderson, C.A., and S.D. Wullschleger. 1994. Photosynthetic acclimation in trees to rising atmospheric CO2: A broader perspective. Photosynthesis Research 39:369–88.

    Article  Google Scholar 

  • Hetrick, B.A.D., G.W.T. Wilson, and T.C. Todd. 1996. Mycorrhizal response in wheat cultivars: Relationship to phosphorus. Canadian Journal of Botany 74:19–25.

    Google Scholar 

  • Huang, Y., F A. Street-Perrott, S.E. Metcalfe, M. Brenner, M. Moreland, and K.H. Freeman. 2001. Climate change as the dominant control on glacial-interglacial variations in C3 and C4 plant abundance. Science 293:1647–51.

    Article  PubMed  Google Scholar 

  • Kanai, R., and G.E. Edwards. 1999. The biochemistry of C4 photosynthesis. In C. 4 plant biology, ed. R.F. Sage and R.K. Monson, 49–87. San Diego: Academic Press.

    Google Scholar 

  • Kaplan, A., Y. Helman, D. Tchernov, and L. Reinhold. 2001. Acclimation of photosynthetic microorganisms to changing ambient CO2 concentration. Proceedings of the National Academy of Science, USA 98:4817–18.

    Google Scholar 

  • Levis, S., and J.A. Foley. 1999. CO2, climate, and vegetation feedbacks at the Last Glacial Maximum. Journal of Geophysical Research 104:31191–98.

    Article  Google Scholar 

  • Maherali, H., C.D. Reid, H.W. Polley, H.B. Johnson, and R.B. Jackson. 2002. Stomatal acclimation over a subambient to elevated CO2 gradient in a C3/C4 grassland. Plant, Cell, and Environment 25:557–66.

    Google Scholar 

  • Makino, A., and T. Mae. 1999. Photosynthesis and plant growth at elevated levels of CO2. Plant and Cell Physiology 40:999–1006.

    Google Scholar 

  • Marchant, R., A. Boom, and H. Hooghiemstra. 2002. Pollen-based biome reconstructions for the past 450 000 yr from the Funza-2 core, Colombia: comparisons with model-based vegetation reconstructions. Palaeogeography, Palaeoclimatology, Palaeoecology 177:29–45.

    Google Scholar 

  • Medrano, H., A.J. Keys, D.W. Lawlor, M.A.J. Parry, J. Azcon-Bieto, and E. Delgado. 1995. Improving plant production by selection for survival at low CO2 concentrations. Journal of Experimental Botany 46:1389–96.

    Google Scholar 

  • Nelson, C.J., K.H. Asay, and L.D. Patton. 1975. Photosynthetic responses of tall fescue to selection for longevity below the CO2 compensation point. Crop Science 15:629–33.

    Google Scholar 

  • Norby, R.J., S.D. Wullschleger, C.A. Gunderson, D.W. Johnson, and R. Ceulemans. 1999. Tree responses to rising CO2 in field experiments: Implications for the future forest. Plant, Cell, and Environment 22:683–714.

    Google Scholar 

  • Norton, L.R., L.G. Firbank, and A.R. Watkinson. 1995. Ecotypic differentiation of response to enhanced CO2 and temperature levels in Arabidopsis thaliana. Oecologia 104:394–96.

    Article  Google Scholar 

  • Overdieck, D., C. Reid, and B.R. Strain. 1988. The effects of preindustrial and future CO2 concentrations on growth, dry matter production and the C/N relationship in plants at low nutrient supply: Vigna unguiculata (Cowpea), Abelmoschus esculentus (Okra) and Raphanus sativus (Radish). Angew, Botanik 62:119–34.

    Google Scholar 

  • Petit, J.R., J. Jouzel, D. Raynaud, N.I. Barkov, J.-M. Barnola, I. Basile, M. Benders, J. Chappellaz, M. Davis, G. Delaygue, M. Delmotte, V.M. Kotlyakov, M. Legrand, V.Y. Lipenkov, C. Lorius, L. Pépin, C. Ritz, E. Saltzman, M. Stievenard. 1999. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 399:429–36.

    Article  Google Scholar 

  • Polley, H.W., H.B. Johnson, and J.D. Derner. 2002. Soil-and plant-water dynamics in a C3/C4 grassland exposed to a subambient to superambient CO2 gradient. Global Change Biology 8:1118–29.

    Article  Google Scholar 

  • Polley, H.W., H.B. Johnson, B.D. Marino, and H.S. Mayeux. 1993a. Increase in C3 plant water-use efficiency and biomass over glacial to present CO2 concentrations. Nature 361:61–64.

    Article  Google Scholar 

  • Polley, H.W., H.B. Johnson, and H.S. Mayeux. 1992. Carbon dioxide and water fluxes of C3 annuals and C4 perennials at subambient CO2 concentrations. Functional Ecology 6:693–703.

    Google Scholar 

  • —. 1994. Increasing CO2: Comparative responses of the C4 grass Schizachyrium and grassland invader Prosopis. Ecology 75:976–88.

    Google Scholar 

  • —. 1995. Nitrogen and water requirements of C3 plants grown at glacial to present carbon dioxide concentrations. Functional Ecology 9:86–96.

    Google Scholar 

  • Polley, H.W., H.B. Johnson, H.S. Mayeux, and S.R. Malone. 1993b. Physiology and growth of wheat across a subambient carbon dioxide gradient. Annals of Botany 71:347–56.

    Article  Google Scholar 

  • Primack, R.B., and J. Antonovics. 1981. Experimental ecological genetics in Plantago. V. Components of seed yield in the ribwort plantain Plantago lanceolata L. Evolution 35:1069–79.

    Google Scholar 

  • Pritchard, S.G., H.H. Rogers, S.A. Prior, and C.M. Peterson. 1999. Elevated CO2 and plant structure: A review. Global Change Biology 5:807–37.

    Article  Google Scholar 

  • Sage, R.F. 1994. Acclimation of photosynthesis to increasing atmospheric CO2: The gas exchange perspective. Photosynthesis Research 39:351–68.

    Article  Google Scholar 

  • —. 1995. Was low atmospheric CO2 during the Pleistocene a limiting factor for the origin of agriculture? Global Change Biology 1:93–106.

    Google Scholar 

  • Sage, R.F., and S.A. Cowling. 1999. Implications of stress in low CO2 atmospheres of the past: Are today’s plants too conservative for a high CO2 world? In Carbon dioxide and environmental stress, ed. Y. Luo and H.A. Mooney, 289–308. San Diego: Academic Press.

    Google Scholar 

  • Sage, R.F., and C.D. Reid. 1992. Photosynthetic acclimation to sub-ambient CO2 (20 Pa) in the C3 annual Phaseolus vulgaris L. Photosynthetica 27:605–17.

    Google Scholar 

  • Sage, R.F., and J.R. Coleman. 2001. Effects of low atmospheric CO2 on plants: More than a thing of the past. Trends in Plant Science 6:18–24.

    Article  PubMed  Google Scholar 

  • Samson, D.A., and K.S. Werk. 1986. Size-dependent effects in the analysis of reproductive effort in plants. The American Naturalist 127:667–80.

    Article  Google Scholar 

  • Schlesinger, W.H. 1997. Biogeochemistry. San Diego: Academic Press.

    Google Scholar 

  • Schwarz, N., and B.R. Strain. 1990. Carbon-a plant nutrient, deficiency and sufficiency. Journal of Plant Nutrition 13:1073–78.

    Google Scholar 

  • Sharma, R.K., B. Griffing, and R.L. Scholl. 1979. Variations among races of Arabidopsis thaliana (L.) Heynh for survival in limited carbon dioxide. Theoretical and Applied Genetics 54:11–15.

    Google Scholar 

  • St. Omer, L., and S.M. Horvath. 1983. Potential effects of elevated carbon dioxide levels on seed germination of three native plant species. Botanical Gazette 144:477–80.

    Article  Google Scholar 

  • Strain, B.R. 1991. Possible genetic effects of continually increasing atmospheric CO2. In Ecological genetics and air pollution, ed. G.E. Taylor, Jr., L.F. Pitelka, and M.T. Clegg, 237–44. Berlin: Springer-Verlag.

    Google Scholar 

  • Street-Perrott, F.A., Y. Huang, R.A. Perrott, G. Eglinton, P. Barker, L.B. Khelifa, D.D. Harkness, and D.O. Olago. 1997. Impact of lower atmospheric carbon dioxide on tropical mountain ecosystems. Science 278:1422–26.

    Article  PubMed  Google Scholar 

  • Tissue, D.T., K.L. Griffin, R.B. Thomas, and B.R. Strain. 1995. Effects of low and elevated CO2 on C3 and C4 annuals. II. Photosynthesis and leaf biochemistry. Oecologia 101:21–28.

    Article  Google Scholar 

  • Tolley, L.C., and B.R. Strain. 1984. Effects of CO2 enrichment and water stress on growth of Liquidambar styraciflua and Pinus taeda seedlings. Canadian Journal of Botany 62:2135–39.

    Google Scholar 

  • Tousignant, D., and C. Potvin. 1996. Selective responses to global change: Experimental results on Brassica juncea (L.) Czern. In Carbon dioxide, populations, and communities, ed. C. Körner and F.A. Bazzaz, 23–30. San Diego: Academic Press.

    Google Scholar 

  • Tschaplinski, T.J., D.B. Stewart, P.J. Hanson, and R.J. Norby. 1995. Interactions between drought and elevated CO2 on growth and gas exchange of seedlings of three deciduous tree species. New Phytologist 129:63–71.

    Google Scholar 

  • Turcq, B., R.C. Cordeiro, A. Sifeddine, F.F.L. Simões Filho, A.L.S. Albuquerque, and J.J. Abrão. 2002. Carbon storage in Amazonia during the Last Glacial Maximum: Secondary data and uncertainties. Chemosphere 49:821–35.

    Article  PubMed  Google Scholar 

  • Ward, J.K., J. Antonovics, R.B. Thomas, and B.R. Strain. 2000. Is atmospheric CO2 a selective agent on model C3 annuals? Oecologia 123:330–41.

    Article  Google Scholar 

  • Ward, J.K., and B.R. Strain. 1997. Effects of low and elevated CO2 partial pressure on growth and reproduction of Arabidopsis thaliana from different elevations. Plant, Cell, and Environment 20:254–60.

    Google Scholar 

  • —. 1999. Elevated CO2 studies: Past, present, and future. Tree Physiology 19:211–20.

    PubMed  Google Scholar 

  • Ward, J.K., D.T. Tissue, R.B. Thomas, and B.R. Strain. 1999. Comparative responses of model C3 and C4 plants to drought in low and elevated CO2. Global Change Biology 5:857–67.

    Article  Google Scholar 

  • Wray, S.M., and B.R. Strain. 1986. Response of two old field perennials to interactions of CO2 enrichment and drought stress. American Journal of Botany 73:1486–91.

    Google Scholar 

  • Yung, Y.L., T. Lee, C. Wang, and Y. Shieh. 1996. Dust: A diagnostic of the hydrologic cycle during the last glacial maximum. Science 271:962–63.

    PubMed  Google Scholar 

  • Zhang, J., and M.J. Lechowicz. 1995. Responses to CO2 enrichment by two genotypes of Arabidopsis thaliana differing in their sensitivity to nutrient availability. Annals of Botany 75:491–99.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Ward, J.K. (2005). Evolution and Growth of Plants in a Low CO2 World. In: Baldwin, I., et al. A History of Atmospheric CO2 and Its Effects on Plants, Animals, and Ecosystems. Ecological Studies, vol 177. Springer, New York, NY. https://doi.org/10.1007/0-387-27048-5_11

Download citation

Publish with us

Policies and ethics