Skip to main content

The FYVE Finger: A Phosphoinositide Binding Domain

  • Chapter
Zinc Finger Proteins

Part of the book series: Molecular Biology Intelligence Unit ((MBIU))

Abstract

The FYVE finger is an evolutionarily conserved double-zinc binding domain with structural similarity to RING and PHD fingers. It consists of two β-hairpins that are stabilized by a C-terminal α-helix and the coordination of two Zn2+ ions. The most characteristic feature of the FYVE finger is a R(R/K)HHCR motif associated with the first β-strand. This motif mediates coordination of the ligand, phosphatidylinositol 3-phosphate (PI3P), via contacts with the phosphate and inositol hydroxyl groups of PI3P. PI3P, a rare lipid formed on endosomes and phagosomes by phosphorylation of phosphatidylinositol, is crucial for phagosome maturation and endocytic trafficking; and FYVE finger proteins are important effectors of PI3P as it has been shown that several FYVE finger proteins among the 27 human proteins play central roles in endocytic and phagocytic membrane trafficking.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Stenmark H, Aasland R, Toh BH et al. Endosomal localization of the autoantigen EEA1 is mediated by a zinc-binding FYVE finger. J Biol Chem 1996; 271:24048–24054.

    Article  PubMed  CAS  Google Scholar 

  2. Stenmark H, Aasland R, Driscoll PC. The phosphatidylinositol 3-phosphate-binding FYVE finger. FEBS Lett 2002; 513:77–84.

    Article  PubMed  CAS  Google Scholar 

  3. Gaullier J-M, Simonsen A, D’Arrigo A et al. FYVE fingers bind PtdIns(3)P. Nature 1998; 394:432–433.

    Article  PubMed  CAS  Google Scholar 

  4. Patki V, Lawe DC, Corvera S et al. A functional PtdIns(3)P-binding motif. Nature 1998; 394:433–434.

    Article  PubMed  CAS  Google Scholar 

  5. Burd CG, Emr SD. Phosphatidylinositol(3)-phosphate signaling mediated by specific binding to RING FYVE domains. Mol Cell 1998; 2:157–162.

    Article  PubMed  CAS  Google Scholar 

  6. Vanhaesebroeck B, Leevers SJ, Ahmadi K et al. Synthesis and function of 3-phosphorylated inositol lipids. Annu Rev Biochem 2001; 70:535–602.

    Article  PubMed  CAS  Google Scholar 

  7. Stack JH, DeWald DB, Takegawa K et al. Vesicle-mediated protein transport: Regulatory interactions between the Vps15 protein kinase and the Vps34 PtdIns 3-kinase essential for protein sorting to the vacuole in yeast. J Cell Biol 1995; 129:321–334.

    Article  PubMed  CAS  Google Scholar 

  8. Volinia S, Dhand R, Vanhaesebroeck B et al. A human phosphatidylinositol 3-kinase complex related to the yeast Vps34p-Vps15p protein sorting system. EMBO J 1995; 14:3339–3348.

    PubMed  CAS  Google Scholar 

  9. Kihara A, Noda T, Ishihara N et al. Two distinct Vps34 phosphatidylinositol 3-kinase complexes function in autophagy and carboxypeptidase Y sorting in Saccharomyces cerevisiae. J Cell Biol. 2001; 152:519–530.

    Article  PubMed  CAS  Google Scholar 

  10. Stephens L, McGregor A, Hawkins P. Phosphoinositide 3-kinases: Regulation by cell-surface receptors and function of 3-phosphorylated lipids. In: Cockcroft S, ed. Biology of phosphoinositides. Oxford: Oxford University Press, 2000:32–108.

    Google Scholar 

  11. Ellson CD, Anderson KE, Morgan G et al. Phosphatidylinositol 3-phosphate is generated in phagosomal membranes. Curr Biol 2001; 11:1631–1635.

    Article  PubMed  CAS  Google Scholar 

  12. Vieira OV, Botelho RJ, Rameh L et al. Distinct roles of class I and III phosphatidylinositol 3-kinases in phagosome formation and maturation. J Cell Biol 2001; 155:19–25.

    Article  PubMed  CAS  Google Scholar 

  13. Gillooly DJ, Morrow IC, Lindsay M et al. Localization of phosphatidylinositol 3-phosphate in yeast and mammalian cells. EMBO J 2000; 19:4577–4588.

    Article  PubMed  CAS  Google Scholar 

  14. Christoforidis S, Miaczynska M, Ashman K et al. Phosphatidylinositol-3-OH kinases are Rab5 effectors. Nature Cell Biol 1999; 1:249–252.

    Article  PubMed  CAS  Google Scholar 

  15. Murray JT, Panaretou C, Stenmark H et al. Role of Rab5 in the recruitment of hVps34/p150 to the early endosome. Traffic 2002; 3:416–427.

    Article  PubMed  CAS  Google Scholar 

  16. Stenmark H, Gillooly DJ. Intracellular trafficking and turnover of phosphatidylinositol 3-phosphate. Semin Cell Dev Biol 2001; 12:193–199.

    Article  PubMed  CAS  Google Scholar 

  17. Wurmser AE, Emr SD. Phosphoinositide signaling and turnover: Ptdlns(3)P, a regulator of membrane traffic, is transported to the vacuole and degraded by a process that requires lumenal vacuolar hydrolase activities. EMBO J 1998; 17:4930–4942.

    Article  PubMed  CAS  Google Scholar 

  18. Taylor GS, Maehama T, Dixon JE. Myotubularin, a protein tyrosine phosphatase mutated in myotubular myopathy, dephosphorylates the lipid second messenger, phosphatidylinositol 3-phosphate. Proc Natl Acad Sci USA 2000; 97:8910–8915.

    Article  PubMed  CAS  Google Scholar 

  19. Laporte J, Liaubet L, Blondeau F et al. Functional redundancy in the myotubularin family. Biochem Biophys Res Commun 2002; 291:305–312.

    Article  PubMed  CAS  Google Scholar 

  20. Walker DM, Urbé S, Dove SK et al. Characterization of MTMR3: an inositol lipid 3-phosphatase with novel substrate activity. Curr Biol 2001; 11:1600–1605.

    Article  PubMed  CAS  Google Scholar 

  21. Odorizzi G, Babst M, Emr SD. Fab1p PtdIns(3)P 5-kinase function essential for protein sorting in the multivesicular body. Cell 1998; 95:847–858.

    Article  PubMed  CAS  Google Scholar 

  22. Sbrissa D, Ikonomov OC, Shisheva A. PIKfyve, a mammalian ortholog of yeast Fab1p lipid kinase, synthesizes 5-phosphoinositides. J Biol Chem 1999; 274:21589–21597.

    Article  PubMed  CAS  Google Scholar 

  23. Gillooly DJ, Simonsen A, Stenmark H. Cellular functions of phosphatidylinositol 3-phosphate and FYVE domain proteins. Biochem J 2001; 355:249–258.

    Article  PubMed  CAS  Google Scholar 

  24. Gillooly DJ, Simonsen A, Stenmark H. Phosphoinositides and phagocytosis. J Cell Biol 2001; 155:15–17.

    Article  PubMed  CAS  Google Scholar 

  25. Schu PV, Takegawa K, Fry MJ et al. Phosphatidylinositol 3-kinase encoded by yeast VPS34 gene essential for protein sorting. Science 1993; 260:88–91.

    Article  PubMed  CAS  Google Scholar 

  26. Jones AT, Clague MJ. Phosphatidylinositol 3-kinase activity is required for early endosome fusion. Biochem J 1995; 311:31–34.

    PubMed  CAS  Google Scholar 

  27. Li G, D’Souza-Schorey C, Barbieri MA et al. Evidence for phosphatidylinositol 3-kinase as a regulator of endocytosis via activation of Rab5. Proc Natl Acad Sci USA 1995; 92:10207–10211.

    Article  PubMed  CAS  Google Scholar 

  28. Siddhanta U, McIlroy J, Shah A et al. Distinct roles for the p110α and hVPS34 phosphatidylinositol 3′-kinases in vesicular trafficking, regulation of the actin cytoskeleton, and mitogenesis. J Cell Biol 1998; 143:1647–1659.

    Article  PubMed  CAS  Google Scholar 

  29. Fernandez-Borja M, Wubbolts R, Calafat J et al. Multivesicular body morphogenesis requires phosphatidylinositol 3-kinase activity. Curr Biol 1999; 14:55–58.

    Article  Google Scholar 

  30. Futter CE, Collinson LM, Backer JM et al. Human VPS34 is required for internal vesicle formation within multivesicular bodies. J Cell Biol 2001; 155:1251–1263.

    Article  PubMed  CAS  Google Scholar 

  31. Fratti RA, Backer JM, Gruenberg J et al. Role of phosphatidylinositol 3-kinase and Rab5 effectors in phagosomal biogenesis and mycobacterial phagosome maturation arrest. J Cell Biol 2001; 154:631–644.

    Article  PubMed  CAS  Google Scholar 

  32. Blommaart EFC, Krause U, Schellens JPM et al. The phosphatidylinositol 3-kinase inhibitors wortmannin and LY294002 inhibit autophagy in isolated rat hepatocytes. Eur J Biochem 1997; 243:240–246.

    Article  PubMed  CAS  Google Scholar 

  33. Petito A, Ogier-Denis E, Blommaart EFC et al. Distinct classes of phosphatidylinositol 3′-kinases are involved in signaling pathways that control macroautophagy in HT-29 cells. J Biol Chem 2000; 275:992–998.

    Article  Google Scholar 

  34. Misra S, Hurley JH. Crystal structure of a phosphatidylinositol 3-phosphate-specific membrane-targeting motif, the FYVE domain of Vps27p. Cell 1999; 97:657–666.

    Article  PubMed  CAS  Google Scholar 

  35. Mao Y, Nickitenko A, Duan X et al. Crystal structure of the VHS and FYVE tandem domains of Hrs, a protein involved in membrane trafficking and signal transduction. Cell 2000; 100:447–456.

    Article  PubMed  CAS  Google Scholar 

  36. Dumas JJ, Merithew E, Sudharshan E et al. Multivalent endosome targeting by homodimeric EEA1. Mol Cell 2001; 8:947–958.

    Article  PubMed  CAS  Google Scholar 

  37. Kutateladze T, Overduin M. Structural mechanism of endosome docking by the FYVE domain. Science 2001; 291:1793–1796.

    Article  PubMed  CAS  Google Scholar 

  38. Gaullier J-M, Rønning E, Gillooly DJ et al. Interaction of the EEA1 FYVE finger with phosphatidylinositol 3-phosphate and early endosomes. Role of conserved residues. J Biol Chem 2000; 275:24595–24600.

    Article  PubMed  CAS  Google Scholar 

  39. Sankaran VG, Klein DE, Sachdeva MM et al. High-affinity binding of a FYVE domain to phosphatidylinositol 3-phosphate requires intact phospholipid but not FYVE domain oligomerization. Biochemistry 2001; 40:8581–8587.

    Article  PubMed  CAS  Google Scholar 

  40. Stahelin RV, Long F, Diraviyam K et al. Phosphatidylinositol 3-phosphate induces the membrane penetration of the FYVE domains of Vps27p and Hrs. J Biol Chem 2002; 277:26379–26388.

    Article  PubMed  CAS  Google Scholar 

  41. Simonsen A, Lippé R, Christoforidis S et al. EEA1 links PI(3)K function to Rab5 regulation of endosome fusion. Nature 1998; 394:494–498.

    Article  PubMed  CAS  Google Scholar 

  42. Panopoulou E, Gillooly DJ, Wrana JL et al. Early endosomal regulation of Smad-dependent signaling in endothelial cells. J Biol Chem 2002; 277:18046–18052.

    Article  PubMed  CAS  Google Scholar 

  43. Hayes S, Chawla A, Corvera S. TGF beta receptor internalization into EEA1-enriched early endosomes: Role in signaling to Smad2. J Cell Biol 2002; 158:1239–1249.

    Article  PubMed  CAS  Google Scholar 

  44. Seet LF, Hong W. Endofin, an endosomal FYVE domain protein. J Biol Chem 2001; 276:42445–42454.

    Article  PubMed  CAS  Google Scholar 

  45. Ridley SH, Ktistakis N, Davidson K et al. FENS-1 and DFCP-1 are FYVE-domain containing proteins with distinct functions in the endosomal and Golgi compartments. J Cell Sci 2001; 114:3991–4000.

    PubMed  CAS  Google Scholar 

  46. Nagata K, Driessens M, Lamarche N et al. Activation of G1 progression, JNK mitogen-activated protein kinase, and actin filament assembly by the exchange factor FGD1. J Biol Chem 1998; 273:15453–15457.

    Article  PubMed  CAS  Google Scholar 

  47. Nielsen E, Christoforidis S, Uttenweiler-Joseph S et al. Rabenosyn-5, a novel Rab5 effector, is complexed with hVPS45 and recruited to endosomes through a FYVE finger domain. J Cell Biol 2000; 151:601–612.

    Article  PubMed  CAS  Google Scholar 

  48. Rubino M, Miaczynska M, Lippé R et al. Selective membrane recruitment of EEA1 suggests a role in directional transport of clathrin-coated vesicles to early endosomes. J Biol Chem 2000; 275:3745–3748.

    Article  PubMed  CAS  Google Scholar 

  49. Weisman LS, Wickner W. Molecular characterization of VAC1, a gene required for vacuole inheritance and vacuole protein sorting. J Biol Chem 1992; 267:618–623.

    PubMed  CAS  Google Scholar 

  50. Tall GG, Hama H, DeWald DB et al. The phosphatidylinositol 3-phosphate binding protein Vac1p interacts with a Rab GTPase and a Sec1p homologue to facilitate vesicle-mediated vacuolar protein sorting. Mol Biol Cell 1999; 10:1873–1889.

    PubMed  CAS  Google Scholar 

  51. Kauppi M, Simonsen A, Bremnes B et al. The small GTPase Rab22 interacts with EEA1 and controls endosomal membrane trafficking. J Cell Sci 2002; 115:899–911.

    PubMed  CAS  Google Scholar 

  52. Merithew E, Stone C, Eathiraj S et al. Determinants of Rab5 interaction with the N terminus of early endosome antigen 1. J Biol Chem 2003; 278:8494–8500.

    Article  PubMed  CAS  Google Scholar 

  53. de Renzis S, Sonnichsen B, Zerial M. Divalent Rab effectors regulate the sub-compartmental organization and sorting of early endosomes. Nat Cell Biol 2002; 4:124–133.

    Article  PubMed  CAS  Google Scholar 

  54. Fratti RA, Backer JM, Gruenberg J et al. Role of phosphatidylinositol 3-kinase and Rab5 effectors in phagosomal biogenesis and mycobacterial phagosome maturation arrest. J Cell Biol 2001; 154:631–644.

    Article  PubMed  CAS  Google Scholar 

  55. Cormont M, Mari M, Galmiche A et al. A FYVE-finger-containing protein, Rabip4, is a Rab4 effector involved in early endosomal traffic. Proc Natl Acad Sci USA 2001; 98:1637–1642.

    Article  PubMed  CAS  Google Scholar 

  56. Yang J, Kim O, Wu J et al. Interaction between tyrosine kinase Etk and a RUN domain-and FYVE domain-containing protein RUFY1. A possible role of ETK in regulation of vesicle trafficking. J Biol Chem 2002; 277:30219–30226.

    Article  PubMed  CAS  Google Scholar 

  57. Komada M, Kitamura N. Growth factor-induced tyrosine phosphorylation of Hrs, a novel 115-kilodalton protein with a structurally conserved putative zinc finger domain. Mol Cell Biol 1995; 15:6213–6221.

    PubMed  CAS  Google Scholar 

  58. Raiborg C, Bache KG, Mehlum A et al. Hrs recruits clathrin to early endosomes. EMBO J 2001; 20:5008–5021.

    Article  PubMed  CAS  Google Scholar 

  59. Raiborg C, Bache KG, Gillooly DJ et al. Hrs sorts ubiquitinated proteins into clathrin-coated microdomains of early endosomes. Nat Cell Biol 2002; 4:394–398.

    Article  PubMed  CAS  Google Scholar 

  60. Shih SC, Katzmann DJ, Schnell JD et al. Epsins and Vps27p/Hrs contain ubiquitin-binding domains that function in receptor endocytosis. Nat Cell Biol 2002; 4:389–393.

    Article  PubMed  CAS  Google Scholar 

  61. Bilodeau PS, Urbanowski JL, Winistorfer SC et al. The Vps27p Hse1p complex binds ubiquitin and mediates endosomal protein sorting. Nat Cell Biol 2002; 4:534–539.

    PubMed  CAS  Google Scholar 

  62. Lloyd TE, Atkinson R, Wu MN et al. Hrs regulates endosome invagination and receptor tyrosine kinase signaling in Drosophila. Cell 2002; 108:261–269.

    Article  PubMed  CAS  Google Scholar 

  63. Ikonomov OC, Sbrissa D, Shisheva A. Mammalian cell morphology and endocytic membrane homeostasis require enzymatically active phosphoinositide 5-kinase PIKfyve. J Biol Chem 2001; 276:26141–26147.

    Article  PubMed  CAS  Google Scholar 

  64. Yamamoto A, DeWald DB, Boronenkov IV et al. Novel PI(4)P 5-kinase homologue, Fab1p, essential for normal vacuole function and morphology in yeast. Mol Biol Cell 1995; 6:525–539.

    PubMed  CAS  Google Scholar 

  65. Gary GD, Wurmser AE, Bonangelino CJ et al. Fab1p is essential for PtdIns(3)P 5-kinase activity and the maintenance of vacuolar size and membrane homeostasis. J Cell Biol 1998; 143:65–79.

    Article  PubMed  CAS  Google Scholar 

  66. Raiborg C, Bremnes B, Mehlum A et al. FYVE and coiled-coil domains determine the specific localisation of Hrs to early endosomes. J Cell Sci 2001; 114:2255–2263.

    PubMed  CAS  Google Scholar 

  67. Sbrissa D, Ikonomov OC, Shisheva A. Phosphatidylinositol 3-phosphate-interacting domains in PIKfyve. Binding specificity and role in PIKfyve. Endomenbrane localization. J Biol Chem 2002; 277:6073–6079.

    Article  PubMed  CAS  Google Scholar 

  68. Mari M, Macia E, Marchand-Brustel Y et al. Role of FYVE-finger and the run domain for the subcellular localization of RABIP4. J Biol Chem 2001; 276:42501–42508.

    Article  PubMed  CAS  Google Scholar 

  69. Tsukazaki T, Chiang TA, Davison AF et al. SARA, a FYVE domain protein that recruits Smad2 to the TGFβ receptor. Cell 1998; 95:779–791.

    Article  PubMed  CAS  Google Scholar 

  70. Di Guglielmo GM, Le Roy C, Goodfellow AF et al. Distinct endocytic pathways regulate TGF-β receptor signalling and turnover. Nat Cell Biol 2003; 5:410–421.

    Article  PubMed  CAS  Google Scholar 

  71. Hu Y, Chuang JZ, Xu K et al. SARA, a FYVE domain protein, affects Rab5-mediated endocytosis. J Cell Sci 2002; 115:4755–4763.

    Article  PubMed  CAS  Google Scholar 

  72. Stenmark H, Asland R. FYVE-finger proteins — effectors of an inositol lipid. J Cell Sci 1999; 112:4175–4183.

    PubMed  CAS  Google Scholar 

  73. Lawe DC, Patki V, Heller-Harrison R et al. The FYVE domain of early endosome antigen 1 is required for both phosphatidylinositol 3-phosphate and Rab5 binding. J Biol Chem 2000; 275:3699–3705.

    Article  PubMed  CAS  Google Scholar 

  74. Christoforidis S, McBride HM, Burgoyne RD et al. The Rab5 effector EEA1 is a core component of endosome docking. Nature 1999; 397:621–626.

    Article  PubMed  CAS  Google Scholar 

  75. Schaletzky J, Dove SK, Short B et al. Phosphatidylinositol-5-phosphate activation and conserved substrate specificity of the myotubularin phosphatidylinositol 3-phosphatases. Curr Biol 2003; 13:504–509.

    Article  PubMed  CAS  Google Scholar 

  76. Pasteris NG, Cadle A, Logie LJ et al. Isolation and characterization of the faciogenital dysplasia (Aarskog-Scott syndrome) gene: a putative Rho/Rac guanine nucleotide exchange factor. Cell 1994; 79:669–678.

    Article  PubMed  CAS  Google Scholar 

  77. Mu FT, Callaghan JM, Steele-Mortimer O et al. EEA1, an early endosome-associated protein. EEA1 is a conserved alpha-helical peripheral membrane protein flanked by cysteine “fingers” and contains a calmodulin-binding IQ motif. J Biol Chem 1995; 270:13503–13511.

    Article  PubMed  CAS  Google Scholar 

  78. Misra S, Miller GJ, Hurley JH. Recognizing phosphatidylinositol 3-phosphate. Cell 2001; 107:559–562.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Landes Bioscience/Eurekah.com and Kluwer Academic/Plenum Publishers

About this chapter

Cite this chapter

Stenmark, H. (2005). The FYVE Finger: A Phosphoinositide Binding Domain. In: Iuchi, S., Kuldell, N. (eds) Zinc Finger Proteins. Molecular Biology Intelligence Unit. Springer, Boston, MA. https://doi.org/10.1007/0-387-27421-9_19

Download citation

Publish with us

Policies and ethics