Skip to main content

Inositol Phosphates and Phosphoinositides in Health and Disease

  • Chapter
Biology of Inositols and Phosphoinositides

Part of the book series: Subcellular Biochemistry ((SCBI,volume 39))

4. Summary

In the past two decades, considerable progress has been made toward understanding inositol phosphates and PI metabolism. However, there is still much to learn. The present challenge is to understand how inositol phosphates and PIs are compartmentalized, identify new targets of inositol phosphates and PIs, and elucidate the mechanisms underlying spatial and temporal regulation of the enzymes that metabolize inositol phosphates and PIs. Answers to these questions will help clarify the mechanisms of the diseases associated with these molecules and identify new possibilities for drug design.

Contributed equally

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Addis, M., Loi, M., Lepiani, C., Cau, M., and Melis, M.A., 2004, OCRL mutation analysis in Italian patients with Lowe syndrome. Hum. Mutat. 23: 524–525.

    PubMed  Google Scholar 

  • Aisen, P.S., 1997, Inflammation and Alzheimer’s disease: Mechanisms and therapeutic strategies. Gerontology 43: 143–149.

    PubMed  CAS  Google Scholar 

  • Atack, J.R., 2000, Lithium, phosphatidylinositol signaling, and bipolar disorder. In: Manji, H.K., Bowden, C.L., and Belmaker, R.H. (eds.), Bipolar Medications: Mechanism of Action. American Psychiatric Press, Inc., Washington, DC.

    Google Scholar 

  • Attree, O., Olivos, I.M., Okabe, I., Bailey, L.C., Nelson, D.L., Lewis, R.A., McInnes, R.R., and Nussbaum, R.L., 1992, The Lowe’s oculocerebrorenal syndrome gene encodes a protein highly homologous to inositol polyphosphate-5-phosphatase. Nature 358: 239–242.

    PubMed  CAS  Google Scholar 

  • Azzedine, H., Bolino, A., Taieb, T., Birouk, N., Di Duca, M., Bouhouche, A., Benamou, S., Mrabet, A., Hammadouche, T., Chkili, T., Gouider, R., Ravazzolo, R., Brice, A., Laporte, J., and LeGuern, E., 2003, Mutations in MTMR13, a new pseudophosphatase homologue of MTMR2 and Sbf1, in two families with an autosomal recessive demyelinating form of Charcot-Marie-Tooth disease associated with early-onset glaucoma. Am. J. Hum. Genet. 72: 1141–1153.

    PubMed  CAS  Google Scholar 

  • Bachhawat, N., and Mande, S.C., 1999, Identification of the INO1 gene of Mycobacterium tuberculosis H37Rv reveals a novel class of inositol-1-phosphate synthase enzyme. J. Mol. Biol. 291: 531–536.

    PubMed  CAS  Google Scholar 

  • Baumann, C.A., Ribon, V., Kanzaki, M., Thurmond, D.C., Mora, S., Shigematsu, S., Bickel, P.E., Pessin, J.E., and Saltiel, A.R., 2000, CAP defines a second signalling pathway required for insulin-stimulated glucose transport. Nature 407: 202–207.

    PubMed  CAS  Google Scholar 

  • Belmaker, R.H., 2004, Bipolar disorder. N. Engl. J. Med. 351: 476–486.

    PubMed  CAS  Google Scholar 

  • Berger, P., Bonneick, S., Willi, S., Wymann, M., and Suter, U., 2002, Loss of phosphatase activity in myotubularin-related protein 2 is associated with Charcot-Marie-Tooth disease type 4B1. Hum. Mol. Genet. 11: 1569–1579.

    PubMed  CAS  Google Scholar 

  • Berridge, M.J., 1987, Inositol trisphosphate and diacylglycerol: Two interacting second messengers. Annu. Rev. Biochem. 56: 159–193.

    PubMed  CAS  Google Scholar 

  • Berridge, M.J., 1993, Inositol trisphosphate and calcium signalling. Nature 361: 315–325.

    PubMed  CAS  Google Scholar 

  • Berridge, M.J., Downes, C.P., and Hanley, M.R., 1982, Lithium amplifies agonist-dependent phosphatidylinositol responses in brain and salivary glands. Biochem. J. 206: 587–595.

    PubMed  CAS  Google Scholar 

  • Berridge, M.J., and Irvine, R.F., 1989, Inositol phosphates and cell signalling. Nature 341: 197–205.

    PubMed  CAS  Google Scholar 

  • Blero, D., De Smedt, F., Pesesse, X., Paternotte, N., Moreau, C., Payrastre, B., and Erneux, C., 2001, The SH2 domain containing inositol 5-phosphatase SHIP2 controls phosphatidylinositol 3,4,5-trisphosphate levels in CHO-IR cells stimulated by insulin. Biochem. Biophys. Res. Commun. 282: 839–843.

    PubMed  CAS  Google Scholar 

  • Blondeau, F., Laporte, J., Bodin, S., Superti-Furga, G., Payrastre, B., and Mandel, J.L., 2000, Myotubularin, a phosphatase deficient in myotubular myopathy, acts on phosphatidylinositol 3-kinase and phosphatidylinositol 3-phosphate pathway. Hum. Mol. Genet. 9: 2223–2229.

    PubMed  CAS  Google Scholar 

  • Bloom, F.E., 2001, Neurotransmission and the central nervous system. In: Hradman, J.G., Limbird, L.E., and Gilman, A.G. (eds.), Goodman and Gilman’s The Pharmacological Basis of Therapeutics, 10th ed., Section III, Chapter 12. The McGraw-Hill companies.

    Google Scholar 

  • Bolino, A., Muglia, M., Conforti, F.L., LeGuern, E., Salih, M.A., Georgiou, D.M., Christodoulou, K., Hausmanowa-Petrusewicz, I., Mandich, P., Schenone, A., Gambardella, A., Bono, F., Quattrone, A., Devoto, M., and Monaco, A.P., 2000, Charcot-Marie-Tooth type 4B is caused by mutations in the gene encoding myotubularin-related protein-2. Nat. Genet. 25: 17–19.

    PubMed  CAS  Google Scholar 

  • Brookmeyer, R., Gray, S., and Kawas, C., 1998, Projections of Alzheimer’s disease in the United States and the public health impact of delaying disease onset. Am. J. Public Health 88: 1337–1342.

    PubMed  CAS  Google Scholar 

  • Buj-Bello, A., Laugel, V., Messaddeq, N., Zahreddine, H., Laporte, J., Pellissier, J.F., and Mandel, J.L., 2002, The lipid phosphatase myotubularin is essential for skeletal muscle maintenance but not for myogenesis in mice. Proc. Natl. Acad. Sci. U. S. A. 99: 15060–15065.

    PubMed  CAS  Google Scholar 

  • Calera, M.R., Martinez, C., Liu, H., Jack, A.K., Birnbaum, M.J., and Pilch, P.F., 1998, Insulin increases the association of Akt-2 with Glut4-containing vesicles. J. Biol. Chem. 273: 7201–7204.

    PubMed  CAS  Google Scholar 

  • Cantley, L.C., 2002, The phosphoinositide 3-kinase pathway. Science 296: 1655–1657.

    PubMed  CAS  Google Scholar 

  • Cantley, L.C., and Neel, B.G., 1999, New insights into tumor suppression: PTEN suppresses tumor formation by restraining the phosphoinositide 3-kinase/AKT pathway. Proc. Natl. Acad. Sci. U. S. A. 96: 4240–4245.

    PubMed  CAS  Google Scholar 

  • Carman, G.M., and Henry, S.A., 1999, Phospholipid biosynthesis in the yeast Saccharomyces cerevisiae and interrelationship with other metabolic processes. Prog. Lipid Res. 38: 361–399.

    PubMed  CAS  Google Scholar 

  • Chen, G., Huang, L.D., Jiang, Y.M., and Manji, H.K., 1999a, The mood-stabilizing agent valproate inhibits the activity of glycogen synthase kinase-3. J. Neurochem. 72: 1327–1330.

    PubMed  CAS  Google Scholar 

  • Chen, G., Zeng, W.Z., Yuan, P.X., Huang, L.D., Jiang, Y.M., Zhao, Z.H., and Manji, H.K., 1999b, The mood-stabilizing agents lithium and valproate robustly increase the levels of the neuroprotective protein bcl-2 in the CNS. J. Neurochem. 72: 879–882.

    PubMed  CAS  Google Scholar 

  • Chen, L., Zhou, C., Yang, H., and Roberts, M.F., 2000, Inositol-1-phosphate synthase from Archaeoglobus fulgidus is a class II aldolase. Biochemistry 39: 12415–12423.

    PubMed  CAS  Google Scholar 

  • Clement, S., Krause, U., Desmedt, F., Tanti, J.F., Behrends, J., Pesesse, X., Sasaki, T., Penninger, J., Doherty, M., Malaisse, W., Dumont, J.E., Le Marchand-Brustel, Y., Erneux, C., Hue, L., and Schurmans, S., 2001, The lipid phosphatase SHIP2 controls insulin sensitivity. Nature 409: 92–97.

    PubMed  CAS  Google Scholar 

  • Connolly, T.M., Bansal, V.S., Bross, T.E., Irvine, R.F., and Majerus, P.W., 1987, The metabolism of tris-and tetraphosphates of inositol by 5-phosphomonoesterase and 3-kinase enzymes. J. Biol. Chem. 262: 2146–2149.

    PubMed  CAS  Google Scholar 

  • de Gouyon, B.M., Zhao, W., Laporte, J., Mandel, J.L., Metzenberg, A., and Herman, G.E., 1997, Characterization of mutations in the myotubularin gene in twenty six patients with X-linked myotubular myopathy. Hum. Mol. Genet. 6: 1499–1504.

    PubMed  Google Scholar 

  • Deliliers, G.L., Servida, F., Fracchiolla, N.S., Ricci, C., Borsotti, C., Colombo, G., and Soligo, D., 2002, Effect of inositol hexaphosphate (IP(6)) on human normal and leukaemic haematopoietic cells. Br. J. Haematol. 117: 577–587.

    PubMed  CAS  Google Scholar 

  • Dressman, M.A., Olivos-Glander, I.M., Nussbaum, R.L., and Suchy, S.F., 2000, Ocrl1, a PtdIns(4,5)P(2) 5-phosphatase, is localized to the trans-Golgi network of fibroblasts and epithelial cells. J. Histochem. Cytochem. 48: 179–190.

    PubMed  CAS  Google Scholar 

  • Druzijanic, N., Juricic, J., Perko, Z., and Kraljevic, D., 2002, IP-6 & inosito: Adjuvant chemotherapy of colon cancer. A pilot clinical trial. Rev. Oncologia 4: 171.

    Google Scholar 

  • Efanov, A.M., Zaitsev, S.V., and Berggren, P.O., 1997, Inositol hexakisphosphate stimulates non-Ca2+-mediated and primes Ca2+-mediated exocytosis of insulin by activation of protein kinase C. Proc. Natl. Acad. Sci. U. S. A. 94: 4435–4439.

    PubMed  CAS  Google Scholar 

  • Fox, C.H., and Eberl, M., 2002, Phytic acid (IP6), novel broad spectrum anti-neoplastic agent: A systematic review. Complement. Ther. Med. 10: 229–234.

    PubMed  CAS  Google Scholar 

  • Freeburn, R.W., Wright, K.L., Burgess, S.J., Astoul, E., Cantrell, D.A., and Ward, S.G., 2002, Evidence that SHIP-1 contributes to phosphatidylinositol 3,4,5-trisphosphate metabolism in T lymphocytes and can regulate novel phosphoinositide 3-kinase effectors. J. Immunol. 169: 5441–5450.

    PubMed  CAS  Google Scholar 

  • Fujii, S., Matsumoto, M., Igarashi, K., Kato, H., and Mikoshiba, K., 2000, Synaptic plasticity in hippocampal CA1 neurons of mice lacking type 1 inositol-1,4,5-trisphosphate receptors. Learn. Mem. 7: 312–320.

    PubMed  CAS  Google Scholar 

  • Garlind, A., Cowburn, R.F., Forsell, C., Ravid, R., Winblad, B., and Fowler, C.J., 1995, Diminished [3H]inositol(1,4,5)P3 but not [3H]inositol(1,3,4,5)P4 binding in Alzheimer’s disease brain. Brain Res. 681: 160–166.

    PubMed  CAS  Google Scholar 

  • Geier, S.J., Algate, P.A., Carlberg, K., Flowers, D., Friedman, C., Trask, B., and Rohrschneider, L.R., 1997, The human SHIP gene is differentially expressed in cell lineages of the bone marrow and blood. Blood 89: 1876–1885.

    PubMed  CAS  Google Scholar 

  • Gould, T.D., Einat, H., Bhat, R., and Manji, H.K., 2004c, AR-A014418, a selective GSK-3 inhibitor, produces antidepressant-like effects in the forced swim test. Int. J. Neuropsychopharmacol. 1–4.

    Google Scholar 

  • Gould, T.D., Quiroz, J.A., Singh, J., Zarate, C.A., and Manji, H.K., 2004a, Emerging experimental therapeutics for bipolar disorder: Insights from the molecular and cellular actions of current mood stabilizers. Mol. Psychiatry 9: 734–755.

    PubMed  CAS  Google Scholar 

  • Gould, T.D., Zarate, C.A., and Manji, H.K., 2004b, Glycogen synthase kinase-3: A target for novel bipolar disorder treatments. J. Clin. Psychiatry. 65: 10–21.

    PubMed  CAS  Google Scholar 

  • Grases, F., Perello, J., Prieto, R.M., Simonet, B.M., and Torres, J.J., 2004, Dietary myo-inositol hexaphosphate prevents dystrophic calcifications in soft tissues: A pilot study in Wistar rats. Life Sci. 75: 11–19.

    PubMed  CAS  Google Scholar 

  • Hallcher, L.M., and Sherman, W.R., 1980, The effects of lithium ion and other agents on the activity of myo-inositol-1-phosphatase from bovine brain. J. Biol. Chem. 255: 10896–10901.

    PubMed  CAS  Google Scholar 

  • Haug, L.S., Ostvold, A.C., Cowburn, R.F., Garlind, A., Winblad, B., Bogdanovich, N., and Walaas, S.I., 1996, Decreased inositol (1,4,5)-trisphosphate receptor levels in Alzheimer’s disease cerebral cortex: Selectivity of changes and possible correlation to pathological severity. Neurodegeneration 5: 169–176.

    PubMed  CAS  Google Scholar 

  • Hawkins, P.T., Poyner, D.R., Jackson, T.R., Letcher, A.J., Lander, D.A., and Irvine, R.F., 1993, Inhibition of iron-catalysed hydroxyl radical formation by inositol polyphosphates: A possible physiological function for myo-inositol hexakisphosphate. Biochem. J. 294(Pt 3): 929–934.

    PubMed  CAS  Google Scholar 

  • Helgason, C.D., Damen, J.E., Rosten, P., Grewal, R., Sorensen, P., Chappel, S.M., Borowski, A., Jirik, F., Krystal, G., and Humphries, R.K., 1998, Targeted disruption of SHIP leads to hemopoietic perturbations, lung pathology, and a shortened life span. Genes Dev. 12: 1610–1620.

    PubMed  CAS  Google Scholar 

  • Herman, G.E., Kopacz, K., Zhao, W., Mills, P.L., Metzenberg, A., and Das, S., 2002, Characterization of mutations in fifty North American patients with X-linked myotubular myopathy. Hum. Mutat. 19: 114–121.

    PubMed  CAS  Google Scholar 

  • Heslop, J.P., Irvine, R.F., Tashjian, A.H., Jr., and Berridge, M.J., 1985, Inositol tetrakis-and pentakisphosphates in GH4 cells. J. Exp. Biol. 119: 395–401.

    PubMed  CAS  Google Scholar 

  • Inhorn, R.C., and Majerus, P.W., 1988, Properties of inositol polyphosphate 1-phosphatase. J. Biol. Chem. 263: 14559–14565.

    PubMed  CAS  Google Scholar 

  • Irvine, R.F., Letcher, A.J., Lander, D.J., and Downes, C.P., 1984, Inositol trisphosphates in carbachol-stimulated rat parotid glands. Biochem. J. 223: 237–243.

    PubMed  CAS  Google Scholar 

  • Irvine, R.F., and Schell, M.J., 2001, Back in the water: The return of the inositol phosphates. Nat. Rev. Mol. Cell Biol. 2: 327–338.

    PubMed  CAS  Google Scholar 

  • Ismailov, II, Fuller, C.M., Berdiev, B.K., Shlyonsky, V.G., Benos, D.J., and Barrett, K.E., 1996, A biologic function for an “orphan” messenger: D-myo-inositol 3,4,5,6-tetrakisphosphate selectively blocks epithelial calcium-activated chloride channels. Proc. Natl. Acad. Sci. U. S. A. 93: 10505–10509.

    PubMed  CAS  Google Scholar 

  • Jacobsen, A.N., Du, X.J., Lambert, K.A., Dart, A.M., and Woodcock, E.A., 1996, Arrhythmogenic action of thrombin during myocardial reperfusion via release of inositol 1,4,5-triphosphate. Circulation 93: 23–26.

    PubMed  CAS  Google Scholar 

  • Janne, P.A., Suchy, S.F., Bernard, D., MacDonald, M., Crawley, J., Grinberg, A., Wynshaw-Boris, A., Westphal, H., and Nussbaum, R.L., 1998, Functional overlap between murine Inpp5b and Ocrl1 may explain why deficiency of the murine ortholog for OCRL1 does not cause Lowe syndrome in mice. J. Clin. Invest. 101: 2042–2053.

    PubMed  CAS  Google Scholar 

  • Jope, R.S., 2003, Lithium and GSK-3: One inhibitor, two inhibitory actions, multiple outcomes. Trends Pharmacol. Sci. 24: 441–443.

    PubMed  CAS  Google Scholar 

  • Ju, S., Greenberg, M.L., in press, 1D-myo-inositol 3-phosphate synthase: Conversion, regulation, and putative target of mood stabilizers. Clin. Neurosci. Res.

    Google Scholar 

  • Ju, S., Shaltiel, G., Shamir, A., Agam, G., and Greenberg, M.L., 2004, Human 1-D-myo-inositol-3-phosphate synthase is functional in yeast. J. Biol. Chem. 279: 21759–21765.

    PubMed  CAS  Google Scholar 

  • Kaidanovich-Beilin, O., Milman, A., Weizman, A., Pick, C.G., and Eldar-Finkelman, H., 2004, Rapid antidepressive-like activity of specific glycogen synthase kinase-3 inhibitor and its effect on beta-catenin in mouse hippocampus. Biol. Psychiatry 55: 781–784.

    PubMed  CAS  Google Scholar 

  • Kanai, F., Ito, K., Todaka, M., Hayashi, H., Kamohara, S., Ishii, K., Okada, T., Hazeki, O., Ui, M., and Ebina, Y., 1993, Insulin-stimulated GLUT4 translocation is relevant to the phosphorylation of IRS-1 and the activity of PI3-kinase. Biochem. Biophys. Res. Commun. 195: 762–768.

    PubMed  CAS  Google Scholar 

  • Kanzaki, M., and Pessin, J.E., 2003, Insulin signaling: GLUT4 vesicles exit via the exocyst. Curr. Biol. 13: R574–R576.

    PubMed  CAS  Google Scholar 

  • Katagiri, H., Asano, T., Ishihara, H., Inukai, K., Shibasaki, Y., Kikuchi, M., Yazaki, Y., and Oka, Y., 1996, Overexpression of catalytic subunit p110alpha of phosphatidylinositol 3-kinase increases glucose transport activity with translocation of glucose transporters in 3T3-L1 adipocytes. J. Biol. Chem. 271: 16987–16990.

    PubMed  CAS  Google Scholar 

  • Kijima, Y., Saito, A., Jetton, T.L., Magnuson, M.A., and Fleischer, S., 1993, Different intracellular localization of inositol 1,4,5-trisphosphate and ryanodine receptors in cardiomyocytes. J. Biol. Chem. 268: 3499–3506.

    PubMed  CAS  Google Scholar 

  • Kitamura, N., Hashimoto, T., Nishino, N., and Tanaka, C., 1989, Inositol 1,4,5-trisphosphate binding sites in the brain: Regional distribution, characterization, and alterations in brains of patients with Parkinson’s disease. J. Mol. Neurosci. 1: 181–187.

    PubMed  CAS  Google Scholar 

  • LaFerla, F.M., 2002, Calcium dyshomeostasis and intracellular signalling in Alzheimer’s disease. Nat. Rev. Neurosci. 3: 862–872.

    PubMed  CAS  Google Scholar 

  • Laporte, J., Biancalana, V., Tanner, S.M., Kress, W., Schneider, V., Wallgren-Pettersson, C., Herger, F., Buj-Bello, A., Blondeau, F., Liechti-Gallati, S., and Mandel, J.L., 2000, MTM1 mutations in X-linked myotubular myopathy. Hum. Mutat. 15: 393–409.

    PubMed  CAS  Google Scholar 

  • Laporte, J., Blondeau, F., Buj-Bello, A., Tentler, D., Kretz, C., Dahl, N., and Mandel, J.L., 1998, Characterization of the myotubularin dual specificity phosphatase gene family from yeast to human. Hum. Mol. Genet. 7: 1703–1712.

    PubMed  CAS  Google Scholar 

  • Laporte, J., Hu, L.J., Kretz, C., Mandel, J.L., Kioschis, P., Coy, J.F., Klauck, S.M., Poustka, A., and Dahl, N., 1996, A gene mutated in X-linked myotubular myopathy defines a new putative tyrosine phosphatase family conserved in yeast. Nat. Genet. 13: 175–182.

    PubMed  CAS  Google Scholar 

  • Larsson, O., Barker, C.J., Sj-oholm, A., Carlqvist, H., Michell, R.H., Bertorello, A., Nilsson, T., Honkanen, R.E., Mayr, G.W., Zwiller, J., and Berggren, P.O., 1997, Inhibition of phosphatases and increased Ca2+ channel activity by inositol hexakisphosphate. Science 278: 471–474.

    PubMed  CAS  Google Scholar 

  • Leung, A.Y., Wong, P.Y., Gabriel, S.E., Yankaskas, J.R., and Boucher, R.C., 1995, cAMP-but not Ca(2+)-regulated Cl-conductance in the oviduct is defective in mouse model of cystic fibrosis. Am. J. Physiol. 268: C708–C712.

    PubMed  CAS  Google Scholar 

  • Li, J., Yen, C., Liaw, D., Podsypanina, K., Bose, S., Wang, S.I., Puc, J., Miliaresis, C., Rodgers, L., McCombie, R., Bigner, S.H., Giovanella, B.C., Ittmann, M., Tycko, B., Hibshoosh, H., Wigler, M.H., and Parsons, R., 1997, PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science 275: 1943–1947.

    PubMed  CAS  Google Scholar 

  • Liang, Y., Hua, Z., Liang, X., Xu, Q., and Lu, G., 2001, The crystal structure of bar-headed goose hemoglobin in deoxy form: The allosteric mechanism of a hemoglobin species with high oxygen affinity. J. Mol. Biol. 313: 123–137.

    PubMed  CAS  Google Scholar 

  • Liaw, D., Marsh, D.J., Li, J., Dahia, P.L., Wang, S.I., Zheng, Z., Bose, S., Call, K.M., Tsou, H.C., Peacocke, M., Eng, C., and Parsons, R., 1997, Germline mutations of the PTEN gene in Cowden disease, an inherited breast and thyroid cancer syndrome. Nat. Genet. 16: 64–67.

    PubMed  CAS  Google Scholar 

  • Lin, T., Orrison, B.M., Leahey, A.M., Suchy, S.F., Bernard, D.J., Lewis, R.A., and Nussbaum, R.L., 1997, Spectrum of mutations in the OCRL1 gene in the Lowe oculocerebrorenal syndrome. Am. J. Hum. Genet. 60: 1384–1388.

    PubMed  CAS  Google Scholar 

  • Liu, Q., Shalaby, F., Jones, J., Bouchard, D., and Dumont, D.J., 1998, The SH2-containing inositol polyphosphate 5-phosphatase, ship, is expressed during hematopoiesis and spermatogenesis. Blood 91: 2753–2759.

    PubMed  CAS  Google Scholar 

  • Loewus, M.W., Loewus, F.A., Brillinger, G.U., Otsuka, H., and Floss, H.G., 1980, Stereochemistry of the myo-inositol-1-phosphate synthase reaction. J. Biol. Chem. 255: 11710–11712.

    PubMed  CAS  Google Scholar 

  • Lorenzon, N.M., and Beam, K.G., 2000, Calcium channelopathies. Kidney Int. 57: 794–802.

    PubMed  CAS  Google Scholar 

  • Lu, P.J., Shieh, W.R., and Chen, C.S., 1996, Antagonistic effect of inositol pentakisphosphate on inositol triphosphate receptors. Biochem. Biophys. Res. Commun. 220: 637–642.

    PubMed  CAS  Google Scholar 

  • Luckhoff, A., and Clapham, D.E., 1992, Inositol 1,3,4,5-tetrakisphosphate activates an endothelial Ca(2+)-permeable channel. Nature 355: 356–358.

    PubMed  CAS  Google Scholar 

  • Luo, J., Manning, B.D., and Cantley, L.C., 2003, Targeting the PI3K-Akt pathway in human cancer: Rationale and promise. Cancer Cell 4: 257–262.

    PubMed  CAS  Google Scholar 

  • Luo, J.M., Yoshida, H., Komura, S., Ohishi, N., Pan, L., Shigeno, K., Hanamura, I., Miura, K., Iida, S., Ueda, R., Naoe, T., Akao, Y., Ohno, R., and Ohnishi, K., 2003, Possible dominant-negative mutation of the SHIP gene in acute myeloid leukemia. Leukemia 17: 1–8.

    PubMed  CAS  Google Scholar 

  • Maehama, T., and Dixon, J.E., 1998, The tumor suppressor, PTEN/MMAC1, dephosphorylates the lipid second messenger, phosphatidylinositol 3,4,5-trisphosphate. J. Biol. Chem. 273: 13375–13378.

    PubMed  CAS  Google Scholar 

  • Maehama, T., Taylor, G.S., and Dixon, J.E., 2001, PTEN and myotubularin: Novel phosphoinositide phosphatases. Annu. Rev. Biochem. 70: 247–279.

    PubMed  CAS  Google Scholar 

  • Majumder, A.L., Chatterjee, A., Ghosh Dastidar, K., and Majee, M., 2003, Diversification and evolution of L-myo-inositol 1-phosphate synthase. FEBS Lett. 553: 3–10.

    PubMed  CAS  Google Scholar 

  • Manji, H.K., Moore, G.J., and Chen, G., 1999, Lithium at 50: Have the neuroprotective effects of this unique cation been overlooked? Biol. Psychiatry 46: 929–940.

    PubMed  CAS  Google Scholar 

  • Marion, E., Kaisaki, P.J., Pouillon, V., Gueydan, C., Levy, J.C., Bodson, A., Krzentowski, G., Daubresse, J.C., Mockel, J., Behrends, J., Servais, G., Szpirer, C., Kruys, V., Gauguier, D., and Schurmans, S., 2002, The gene INPPL1, encoding the lipid phosphatase SHIP2, is a candidate for type 2 diabetes in rat and man. Diabetes 51: 2012–2017.

    PubMed  CAS  Google Scholar 

  • Marsh, D.J., Coulon, V., Lunetta, K.L., Rocca-Serra, P., Dahia, P.L., Zheng, Z., Liaw, D., Caron, S., Duboue, B., Lin, A.Y., Richardson, A.L., Bonnetblanc, J.M., Bressieux, J.M., Cabarrot-Moreau, A., Chompret, A., Demange, L., Eeles, R.A., Yahanda, A.M., Fearon, E.R., Fricker, J.P., Gorlin, R.J., Hodgson, S.V., Huson, S., Lacombe, D., and Eng, C., 1998, Mutation spectrum and genotype-phenotype analyses in Cowden disease and Bannayan-Zonana syndrome, two hamartoma syndromes with germline PTEN mutation. Hum. Mol. Genet. 7: 507–515.

    PubMed  CAS  Google Scholar 

  • Martelli, A.M., Manzoli, L., and Cocco, L., 2004, Nuclear inositides: Facts and perspectives. Pharmacol. Ther. 101: 47–64.

    PubMed  CAS  Google Scholar 

  • Martin, T.F., 1998, Phosphoinositide lipids as signaling molecules: Common themes for signal transduction, cytoskeletal regulation, and membrane trafficking. Annu. Rev. Cell Dev. Biol. 14: 231–264.

    PubMed  CAS  Google Scholar 

  • Matsumoto, M., Nakagawa, T., Inoue, T., Nagata, E., Tanaka, K., Takano, H., Minowa, O., Kuno, J., Sakakibara, S., Yamada, M., Yoneshima, H., Miyawaki, A., Fukuuchi, Y., Furuichi, T., Okano, H., Mikoshiba, K., and Noda, T., 1996, Ataxia and epileptic seizures in mice lacking type 1 inositol 1,4,5-trisphosphate receptor. Nature 379: 168–171.

    PubMed  CAS  Google Scholar 

  • Mattson, M.P., LaFerla, F.M., Chan, S.L., Leissring, M.A., Shepel, P.N., and Geiger, J.D., 2000a, Calcium signaling in the ER: Its role in neuronal plasticity and neurodegenerative disorders. Trends Neurosci. 23: 222–229.

    PubMed  CAS  Google Scholar 

  • Mattson, M.P., Zhu, H., Yu, J., and Kindy, M.S., 2000b, Presenilin-1 mutation increases neuronal vulnerability to focal ischemia in vivo and to hypoxia and glucose deprivation in cell culture: Involvement of perturbed calcium homeostasis. J. Neurosci. 20: 1358–1364.

    PubMed  CAS  Google Scholar 

  • McGeer, P.L., and McGeer, E.G., 1995, The inflammatory response system of brain: Implications for therapy of Alzheimer and other neurodegenerative diseases. Brain Res. Brain Res. Rev. 21: 195–218.

    PubMed  CAS  Google Scholar 

  • Mellstrom, B., and Naranjo, J.R., 2001, Mechanisms of Ca(2+)-dependent transcription. Curr. Opin. Neurobiol. 11: 312–319.

    PubMed  CAS  Google Scholar 

  • Menniti, F.S., Miller, R.N., Putney, J.W., Jr., and Shears, S.B., 1993, Turnover of inositol polyphosphate pyrophosphates in pancreatoma cells. J. Biol. Chem. 268: 3850–3856.

    PubMed  CAS  Google Scholar 

  • Missiaen, L., Robberecht, W., van den Bosch, L., Callewaert, G., Parys, J.B., Wuytack, F., Raeymaekers, L., Nilius, B., Eggermont, J., and De Smedt, H., 2000, Abnormal intracellular ca(2+)homeostasis and disease. Cell Calcium 28: 1–21.

    PubMed  CAS  Google Scholar 

  • Modiano, G., Bombieri, C., Ciminelli, B.M., Belpinati, F., Giorgi, S., Georges, M.D., Scotet, V., Pompei, F., Ciccacci, C., Guittard, C., Audrezet, M.P., Begnini, A., Toepfer, M., Macek, M., Ferec, C., Claustres, M., and Pignatti, P.F., 2004, A large-scale study of the random variability of a coding sequence: A study on the CFTR gene. Eur. J. Hum. Genet.

    Google Scholar 

  • Monnier, N., Satre, V., Lerouge, E., Berthoin, F., and Lunardi, J., 2000, OCRL1 mutation analysis in French Lowe syndrome patients: Implications for molecular diagnosis strategy and genetic counseling. Hum. Mutat. 16: 157–165.

    PubMed  CAS  Google Scholar 

  • Moore, G.J., Bebchuk, J.M., Parrish, J.K., Faulk, M.W., Arfken, C.L., Strahl-Bevacqua, J., and Manji, H.K., 1999, Temporal dissociation between lithium-induced changes in frontal lobe myo-inositol and clinical response in manic-depressive illness. Am. J. Psychiatry 156: 1902–1908.

    PubMed  CAS  Google Scholar 

  • Morris, A.P., Gallacher, D.V., Irvine, R.F., and Petersen, O.H., 1987, Synergism of inositol trisphosphate and tetrakisphosphate in activating Ca2+-dependent K+ channels. Nature 330: 653–655.

    PubMed  CAS  Google Scholar 

  • Mouton, R., Huisamen, B., and Lochner, A., 1991, Increased myocardial inositol trisphosphate levels during alpha 1-adrenergic stimulation and reperfusion of ischaemic rat heart. J. Mol. Cell. Cardiol. 23: 841–850.

    PubMed  CAS  Google Scholar 

  • Murray, C.J.L., and Lopez, A.D. (eds.), 1996, The Global Burden of Disease. Harvard University Press, Cambridge, MA.

    Google Scholar 

  • Naccarato, W.F., Ray, R.E., and Wells, W.W., 1974, Biosynthesis of myo-inositol in rat mammary gland. Isolation and properties of the enzymes. Arch. Biochem. Biophys. 164: 194–201.

    PubMed  CAS  Google Scholar 

  • Nakashima, N., Sharma, P.M., Imamura, T., Bookstein, R., and Olefsky, J.M., 2000, The tumor suppressor PTEN negatively regulates insulin signaling in 3T3-L1 adipocytes. J. Biol. Chem. 275: 12889–12895.

    PubMed  CAS  Google Scholar 

  • Narrow, W.E., Rae, D.S., Robins, L.N., and Regier, D.A., 2002, Revised prevalence estimates of mental disorders in the United States: Using a clinical significance criterion to reconcile 2 surveys’ estimates. Arch. Gen. Psychiatry 59: 115–123.

    PubMed  Google Scholar 

  • Nelen, M.R., van Staveren, W.C., Peeters, E.A., Hassel, M.B., Gorlin, R.J., Hamm, H., Lindboe, C.F., Fryns, J.P., Sijmons, R.H., Woods, D.G., Mariman, E.C., Padberg, G.W., and Kremer, H., 1997, Germline mutations in the PTEN/MMAC1 gene in patients with Cowden disease. Hum. Mol. Genet. 6: 1383–1387.

    PubMed  CAS  Google Scholar 

  • Nishino, I., Minami, N., Kobayashi, O., Ikezawa, M., Goto, Y., Arahata, K., and Nonaka, I., 1998, MTM1 gene mutations in Japanese patients with the severe infantile form of myotubular myopathy. Neuromuscul. Disord. 8: 453–458.

    PubMed  CAS  Google Scholar 

  • Okada, T., Sakuma, L., Fukui, Y., Hazeki, O., and Ui, M., 1994, Blockage of chemotactic peptideinduced stimulation of neutrophils by wortmannin as a result of selective inhibition of phosphatidylinositol 3-kinase. J. Biol. Chem. 269: 3563–3567.

    PubMed  CAS  Google Scholar 

  • Olivos-Glander, I.M., Janne, P.A., and Nussbaum, R.L., 1995, The oculocerebrorenal syndrome gene product is a 105-kD protein localized to the Golgi complex. Am. J. Hum. Genet. 57: 817–823.

    PubMed  CAS  Google Scholar 

  • Ono, H., Katagiri, H., Funaki, M., Anai, M., Inukai, K., Fukushima, Y., Sakoda, H., Ogihara, T., Onishi, Y., Fujishiro, M., Kikuchi, M., Oka, Y., and Asano, T., 2001, Regulation of phosphoinositide metabolism, Akt phosphorylation, and glucose transport by PTEN (phosphatase and tensin homolog deleted on chromosome 10) in 3T3-L1 adipocytes. Mol Endocrinol. 15: 1411–1422.

    PubMed  CAS  Google Scholar 

  • Patterson, R.L., Boehning, D., and Snyder, S.H., 2004, Inositol 1,4,5-trisphosphate receptors as signal integrators. Annu. Rev. Biochem. 73: 437–465.

    PubMed  CAS  Google Scholar 

  • Pendaries, C., Tronchere, H., Plantavid, M., and Payrastre, B., 2003, Phosphoinositide signaling disorders in human diseases. FEBS Lett. 546: 25–31.

    PubMed  CAS  Google Scholar 

  • Pollack, S.J., Atack, J.R., Knowles, M.R., McAllister, G., Ragan, C.I., Baker, R., Fletcher, S.R., Iversen, L.L., and Broughton, H.B., 1994, Mechanism of inositol monophosphatase, the putative target of lithium therapy. Proc. Natl. Acad. Sci. U. S. A. 91: 5766–5770.

    PubMed  CAS  Google Scholar 

  • Posternak, S., 1919, Sur la synthese de l’ ether hexaphosphorique de l’ inosite avec le principe phosphoorganique de reserve des plantes vertes. C. R. Acad. Sci. 169: 138–140.

    CAS  Google Scholar 

  • Riekse, R.G., Leverenz, J.B., McCormick, W., Bowen, J.D., Teri, L., Nochlin, D., Simpson, K., Eugenio, C., Larson, E.B., and Tsuang, D., 2004, Effect of vascular lesions on cognition in Alzheimer’s disease: A community-based study. J. Am. Geriatr. Soc. 52: 1442–1448.

    PubMed  Google Scholar 

  • Riera, M., Fuster, J.F., and Palacios, L., 1991, Role of erythrocyte organic phosphates in blood oxygen transport in anemic quail. Am. J. Physiol. 260: R798–R803.

    PubMed  CAS  Google Scholar 

  • Rudolf, M.T., Dinkel, C., Traynor-Kaplan, A.E., and Schultz, C., 2003, Antagonists of myo-inositol 3,4,5,6-tetrakisphosphate allow repeated epithelial chloride secretion. Bioorg. Med. Chem. 11: 3315–3329.

    PubMed  CAS  Google Scholar 

  • Saltiel, A.R., and Kahn, C.R., 2001, Insulin signalling and the regulation of glucose and lipid metabolism. Nature 414: 799–806.

    PubMed  CAS  Google Scholar 

  • Sarnat, H.B., 1990, Myotubular myopathy: Arrest of morphogenesis of myofibres associated with persistence of fetal vimentin and desmin. Four cases compared with fetal and neonatal muscle. Can. J. Neurol. Sci. 17: 109–123.

    PubMed  CAS  Google Scholar 

  • Sattler, M., Verma, S., Byrne, C.H., Shrikhande, G., Winkler, T., Algate, P.A., Rohrschneider, L.R., and Griffin, J.D., 1999, BCR/ABL directly inhibits expression of SHIP, an SH2-containing polyinositol-5-phosphatase involved in the regulation of hematopoiesis. Mol. Cell. Biol. 19: 7473–7480.

    PubMed  CAS  Google Scholar 

  • Sbrissa, D., Ikonomov, O.C., Strakova, J., and Shisheva, A., 2004, Role for a novel signaling intermediate, phosphatidylinositol 5-phosphate, in insulin-regulated F-actin stress fiber breakdown and GLUT4 translocation. Endocrinology 145: 4853–4865.

    PubMed  CAS  Google Scholar 

  • Selkoe, D.J., 1991, The molecular pathology of Alzheimer’s disease. Neuron 6: 487–498.

    PubMed  CAS  Google Scholar 

  • Selkoe, D.J., 2001, Alzheimer’s disease: Genes, proteins, and therapy. Physiol. Rev. 81: 741–766.

    PubMed  CAS  Google Scholar 

  • Senderek, J., Bergmann, C., Weber, S., Ketelsen, U.P., Schorle, H., Rudnik-Schoneborn, S., Buttner, R., Buchheim, E., and Zerres, K., 2003, Mutation of the SBF2 gene, encoding a novel member of the myotubularin family, in Charcot-Marie-Tooth neuropathy type 4B2/11p15. Hum. Mol. Genet. 12: 349–356.

    PubMed  CAS  Google Scholar 

  • Shaltiel, G., Shamir, A., Shapiro, J., Ding, D., Dalton, E., Bialer, M., Harwood, J.A., Belmaker, R.H., Greenberg, M.L., and Agam, G., in press, Valproate decreases inositol biosynthesis. Mol. Psychiatry.

    Google Scholar 

  • Sharma, P.M., Egawa, K., Huang, Y., Martin, J.L., Huvar, I., Boss, G.R., and Olefsky, J.M., 1998, Inhibition of phosphatidylinositol 3-kinase activity by adenovirus-mediated gene transfer and its effect on insulin action. J. Biol. Chem. 273: 18528–18537.

    PubMed  CAS  Google Scholar 

  • Shepherd, P.R., Withers, D.J., and Siddle, K., 1998, Phosphoinositide 3-kinase: The key switch mechanism in insulin signalling. Biochem. J. 333(Pt 3): 471–490.

    PubMed  CAS  Google Scholar 

  • Shulman, G.I., 2000, Cellular mechanisms of insulin resistance. J. Clin. Invest. 106: 171–176.

    PubMed  CAS  Google Scholar 

  • Silverstone, P.H., Wu, R.H., O’Donnell, T., Ulrich, M., Asghar, S.J., and Hanstock, C.C., 2002, Chronic treatment with both lithium and sodium valproate may normalize phosphoinositol cycle activity in bipolar patients. Hum. Psychopharmacol. 17: 321–327.

    PubMed  CAS  Google Scholar 

  • Smith, P.M., Harmer, A.R., Letcher, A.J., and Irvine, R.F., 2000, The effect of inositol 1,3,4,5-tetrakisphosphate on inositol trisphosphate-induced Ca2+ mobilization in freshly isolated and cultured mouse lacrimal acinar cells. Biochem. J. 347(Pt 1): 77–82.

    PubMed  CAS  Google Scholar 

  • Steck, P.A., Pershouse, M.A., Jasser, S.A., Yung, W.K., Lin, H., Ligon, A.H., Langford, L.A., Baumgard, M.L., Hattier, T., Davis, T., Frye, C., Hu, R., Swedlund, B., Teng, D.H., and Tavtigian, S.V., 1997, Identification of a candidate tumour suppressor gene, MMAC1, at chromosome 10q23.3 that is mutated in multiple advanced cancers. Nat. Genet. 15: 356–362.

    PubMed  CAS  Google Scholar 

  • Stephens, L., Radenberg, T., Thiel, U., Vogel, G., Khoo, K.H., Dell, A., Jackson, T.R., Hawkins, P.T., and Mayr, G.W., 1993, The detection, purification, structural characterization, and metabolism of diphosphoinositol pentakisphosphate(s) and bisdiphosphoinositol tetrakisphosphate(s). J. Biol. Chem. 268: 4009–4015.

    PubMed  CAS  Google Scholar 

  • Stephens, L.R., Hawkins, P.T., Stanley, A.F., Moore, T., Poyner, D.R., Morris, P.J., Hanley, M.R., Kay, R.R., and Irvine, R.F., 1991, myo-Inositol pentakisphosphates. Structure, biological occurrence and phosphorylation to myo-inositol hexakisphosphate. Biochem. J. 275(Pt 2): 485–499.

    PubMed  CAS  Google Scholar 

  • Streb, H., Irvine, R.F., Berridge, M.J., and Schulz, I., 1983, Release of Ca2+ from a nonmitochondrial intracellular store in pancreatic acinar cells by inositol-1,4,5-trisphosphate. Nature 306: 67–69.

    PubMed  CAS  Google Scholar 

  • Street, V.A., Bosma, M.M., Demas, V.P., Regan, M.R., Lin, D.D., Robinson, L.C., Agnew, W.S., and Tempel, B.L., 1997, The type 1 inositol 1,4,5-trisphosphate receptor gene is altered in the opisthotonos mouse. J. Neurosci. 17: 635–645.

    PubMed  CAS  Google Scholar 

  • Stutzmann, G.E., Caccamo, A., LaFerla, F.M., and Parker, I., 2004, Dysregulated IP3 signaling in cortical neurons of knock-in mice expressing an Alzheimer’s-linked mutation in presenilin1 results in exaggerated Ca2+ signals and altered membrane excitability. J. Neurosci. 24: 508–513.

    PubMed  CAS  Google Scholar 

  • Suchy, S.F., and Nussbaum, R.L., 2002, The deficiency of PIP2 5-phosphatase in Lowe syndrome affects actin polymerization. Am. J. Hum. Genet. 71: 1420–1427.

    PubMed  CAS  Google Scholar 

  • Suchy, S.F., Olivos-Glander, I.M., and Nussabaum, R.L., 1995, Lowe syndrome, a deficiency of phosphatidylinositol 4,5-bisphosphate 5-phosphatase in the Golgi apparatus. Hum. Mol. Genet. 4: 2245–2250.

    PubMed  CAS  Google Scholar 

  • Sylvia, V., Curtin, G., Norman, J., Stec, J., and Busbee, D., 1988, Activation of a low specific activity form of DNA polymerase alpha by inositol-1,4-bisphosphate. Cell 54: 651–658.

    PubMed  CAS  Google Scholar 

  • Tang, T.S., Tu, H., Chan, E.Y., Maximov, A., Wang, Z., Wellington, C.L., Hayden, M.R., and Bezprozvanny, I., 2003, Huntingtin and huntingtin-associated protein 1 influence neuronal calcium signaling mediated by inositol-(1,4,5) triphosphate receptor type 1. Neuron 39: 227–239.

    PubMed  CAS  Google Scholar 

  • Tanner, S.M., Schneider, V., Thomas, N.S., Clarke, A., Lazarou, L., and Liechti-Gallati, S., 1999, Characterization of 34 novel and six known MTM1 gene mutations in 47 unrelated X-linked myotubular myopathy patients. Neuromuscul. Disord. 9: 41–49.

    PubMed  CAS  Google Scholar 

  • Tantivejkul, K., Vucenik, I., Eiseman, J., and Shamsuddin, A.M., 2003, Inositol hexaphosphate (IP6) enhances the anti-proliferative effects of adriamycin and tamoxifen in breast cancer. Breast Cancer Res. Treat. 79: 301–312.

    PubMed  CAS  Google Scholar 

  • Taylor, G.S., Maehama, T., and Dixon, J.E., 2000, Inaugural article: Myotubularin, a protein tyrosine phosphatase mutated in myotubular myopathy, dephosphorylates the lipid second messenger, phosphatidylinositol 3-phosphate. Proc. Natl. Acad. Sci. U. S. A. 97: 8910–8915.

    PubMed  CAS  Google Scholar 

  • Toker, A., 2002, Phosphoinositides and Signal Transduction.

    Google Scholar 

  • Tonner, P.H., Scholz, J., Richter, A., Loscher, W., Steinfath, M., Wappler, F., Wlaz, P., Hadji, B., Roewer, N., and Schulte am Esch, J., 1995, Alterations of inositol polyphosphates in skeletal muscle during porcine malignant hyperthermia. Br. J. Anaesth. 75: 467–471.

    PubMed  CAS  Google Scholar 

  • Tsubokawa, H., Oguro, K., Robinson, H.P., Masuzawa, T., and Kawai, N., 1996, Intracellular inositol 1,3,4,5-tetrakisphosphate enhances the calcium current in hippocampal CA1 neurones of the gerbil after ischaemia. J. Physiol. 497(Pt 1): 67–78.

    PubMed  CAS  Google Scholar 

  • Tsujita, K., Itoh, T., Ijuin, T., Yamamoto, A., Shisheva, A., Laporte, J., and Takenawa, T., 2004, Myotubularin regulates the function of the late endosome through the gram domainphosphatidylinositol 3,5-bisphosphate interaction. J. Biol. Chem. 279: 13817–13824.

    PubMed  CAS  Google Scholar 

  • Ueki, K., Yamamoto-Honda, R., Kaburagi, Y., Yamauchi, T., Tobe, K., Burgering, B.M., Coffer, P.J., Komuro, I., Akanuma, Y., Yazaki, Y., and Kadowaki, T., 1998, Potential role of protein kinase B in insulin-induced glucose transport, glycogen synthesis, and protein synthesis. J. Biol. Chem. 273: 5315–5322.

    PubMed  CAS  Google Scholar 

  • Ungewickell, A.J., and Majerus, P.W., 1999, Increased levels of plasma lysosomal enzymes in patients with Lowe syndrome. Proc. Natl. Acad. Sci. U. S. A. 96: 13342–13344.

    PubMed  CAS  Google Scholar 

  • Ungewickell, A., Ward, M.E., Ungewickell, E., and Majerus, P.W., 2004, The inositol polyphosphate 5-phosphatase Ocrl associates with endosomes that are partially coated with clathrin. Proc. Natl. Acad. Sci. U. S. A. 101: 13501–13506.

    PubMed  CAS  Google Scholar 

  • Vaden, D.L., Ding, D., Peterson, B., and Greenberg, M.L., 2001, Lithium and valproate decrease inositol mass and increase expression of the yeast INO1 and INO2 genes for inositol biosynthesis. J. Biol. Chem. 276: 15466–15471.

    PubMed  CAS  Google Scholar 

  • Vajanaphanich, M., Schultz, C., Rudolf, M.T., Wasserman, M., Enyedi, P., Craxton, A., Shears, S.B., Tsien, R.Y., Barrett, K.E., and Traynor-Kaplan, A., 1994, Long-term uncoupling of chloride secretion from intracellular calcium levels by Ins(3,4,5,6)P4. Nature 371: 711–714.

    PubMed  CAS  Google Scholar 

  • Vivanco, I., and Sawyers, C.L., 2002, The phosphatidylinositol 3-Kinase AKT pathway in human cancer. Nat. Rev. Cancer 2: 489–501.

    PubMed  CAS  Google Scholar 

  • Voglmaier, S.M., Bembenek, M.E., Kaplin, A.I., Dorman, G., Olszewski, J.D., Prestwich, G.D., and Snyder, S.H., 1996, Purified inositol hexakisphosphate kinase is an ATP synthase: Diphosphoinositol pentakisphosphate as a high-energy phosphate donor. Proc. Natl. Acad. Sci. U. S. A. 93: 4305–4310.

    PubMed  CAS  Google Scholar 

  • Vucenik, I., and Shamsuddin, A.M., 2003, Cancer inhibition by inositol hexaphosphate (IP6) and inositol: From laboratory to clinic. J. Nutr. 133: 3778S–3784S.

    PubMed  CAS  Google Scholar 

  • Wappler, F., Scholz, J., Kochling, A., Steinfath, M., Krause, T., and Schulte am Esch, J., 1997, Inositol 1,4,5-trisphosphate in blood and skeletal muscle in human malignant hyperthermia. Br. J. Anaesth. 78: 541–547.

    PubMed  CAS  Google Scholar 

  • Warsh, J.J., Politsky, J.M., Li, P.P., Kish, S.J., and Hornykiewicz, O., 1991, Reduced striatal [3H]inositol 1,4,5-trisphosphate binding in Huntington’s disease. J. Neurochem. 56: 1417–1422.

    PubMed  CAS  Google Scholar 

  • Whitman, M., Kaplan, D.R., Schaffhausen, B., Cantley, L., and Roberts, T.M., 1985, Association of phosphatidylinositol kinase activity with polyoma middle-T competent for transformation. Nature 315: 239–242.

    PubMed  CAS  Google Scholar 

  • Williams, R.S., Cheng, L., Mudge, A.W., and Harwood, A.J., 2002, A common mechanism of action for three mood-stabilizing drugs. Nature 417: 292–295.

    PubMed  CAS  Google Scholar 

  • Wishart, M.J., Taylor, G.S., Slama, J.T., and Dixon, J.E., 2001, PTEN and myotubularin phosphoinositide phosphatases: Bringing bioinformatics to the lab bench. Curr. Opin. Cell Biol. 13: 172–181.

    PubMed  CAS  Google Scholar 

  • Woodcock, E.A., 1997, Inositol phosphates and inositol phospholipids: How big is the iceberg? Mol. Cell. Endocrinol. 127: 1–10.

    PubMed  CAS  Google Scholar 

  • Woodcock, E.A., Lambert, K.A., and Du, X.J., 1996, Ins(1,4,5)P3 during myocardial ischemia and its relationship to the development of arrhythmias. J. Mol. Cell. Cardiol. 28: 2129–2138.

    PubMed  CAS  Google Scholar 

  • Woodcock, E.A., Lambert, K.A., Phan, T., and Jacobsen, A.N., 1997, Inositol phosphate metabolism during myocardial ischemia. J. Mol. Cell. Cardiol. 29: 449–460.

    PubMed  CAS  Google Scholar 

  • Yamamoto, K., Hashimoto, K., Nakano, M., Shimohama, S., and Kato, N., 2002, A distinct form of calcium release down-regulates membrane excitability in neocortical pyramidal cells. Neuroscience 109: 665–676.

    PubMed  CAS  Google Scholar 

  • Ye, W., Ali, N., Bembenek, M.E., Shears, S.B., and Lafer, E.M., 1995, Inhibition of clathrin assembly by high affinity binding of specific inositol polyphosphates to the synapse-specific clathrin assembly protein AP-3. J. Biol. Chem. 270: 1564–1568.

    PubMed  CAS  Google Scholar 

  • York, J.D., Guo, S., Odom, A.R., Spiegelberg, B.D., and Stolz, L.E., 2001, An expanded view of inositol signaling. Adv. Enzyme Regul. 41: 57–71.

    PubMed  CAS  Google Scholar 

  • York, J.D., Odom, A.R., Murphy, R., Ives, E.B., and Wente, S.R., 1999, A phospholipase C-dependent inositol polyphosphate kinase pathway required for efficient messenger RNA export. Science 285: 96–100.

    PubMed  CAS  Google Scholar 

  • York, J.D., Saffitz, J.E., and Majerus, P.W., 1994, Inositol polyphosphate 1-phosphatase is present in the nucleus and inhibits DNA synthesis. J. Biol. Chem. 269: 19992–19999.

    PubMed  CAS  Google Scholar 

  • Zecevic, N., Milosevic, A., and Ehrlich, B.E., 1999, Calcium signaling molecules in human cerebellum at midgestation and in ataxia. Early Hum. Dev. 54: 103–116.

    PubMed  CAS  Google Scholar 

  • Zhang, X., Hartz, P.A., Philip, E., Racusen, L.C., and Majerus, P.W., 1998, Cell lines from kidney proximal tubules of a patient with Lowe syndrome lack OCRL inositol polyphosphate 5-phosphatase and accumulate phosphatidylinositol 4,5-bisphosphate. J. Biol. Chem. 273: 1574–1582.

    PubMed  CAS  Google Scholar 

  • Zhang, X., Jefferson, A.B., Auethavekiat, V., and Majerus, P.W., 1995, The protein deficient in Lowe syndrome is a phosphatidylinositol-4,5-bisphosphate 5-phosphatase. Proc. Natl. Acad. Sci. U. S. A. 92: 4853–4856.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Shi, Y., Azab, A.N., Thompson, M.N., Greenberg, M.L. (2006). Inositol Phosphates and Phosphoinositides in Health and Disease. In: Majumder, A.L., Biswas, B.B. (eds) Biology of Inositols and Phosphoinositides. Subcellular Biochemistry, vol 39. Springer, Boston, MA . https://doi.org/10.1007/0-387-27600-9_11

Download citation

Publish with us

Policies and ethics