Skip to main content

The Regulation of Catenins in Cancer

  • Chapter
Rise and Fall of Epithelial Phenotype

Part of the book series: Molecular Biology Intelligence Unit ((MBIU))

  • 665 Accesses

Abstract

The cadherin-catenin system of cell-cell adhesion molecules plays a key role in determining cellular and tissue morphogenesis. The normal function of this molecular complex is indispensable during various stages throughout development, not only for determining the proper adhesive interactions between neighboring cells, but also for transducing the signals elicited by the Wnt pathway, mostly by β-catenin. The dual role of β-catenin in the assembly of cell-cell adherens junctions and its role as a cotranscriptional activator of target genes in the Wnt pathway is often disrupted in cancer cells. In this perspective, we discuss the interplay between the adhesive and signaling roles of the cadherin-catenin system, its regulation by various mechanisms, with special emphasis on its role in the development of cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hirohashi S. Inactivation of the E-cadherin-mediated cell adhesion system in human cancers. Am J Pathol 1998; 153:333–339.

    PubMed  CAS  Google Scholar 

  2. Ben-Ze’ev A. The dual role of cytoskeletal anchor proteins in cell adhesion and signal transduction. Ann NY Acad Sci 1999; 886:37–47.

    PubMed  CAS  Google Scholar 

  3. Ben-Ze’ev A, Geiger B. Differential molecular interactions of β-catenin and plakoglobin in adhesion, signaling and cancer. Curr Opin Cell Biol 1998; 10:629–639.

    PubMed  CAS  Google Scholar 

  4. Nagafuchi A. Molecular architecture of adherens junctions. Curr Opin Cell Biol 2001; 13:600–603.

    PubMed  CAS  Google Scholar 

  5. Ben-Ze’ev A. Cytoskeletal and adhesion proteins as tumor suppressors. Curr Opin Cell Biol 1997; 9:99–108.

    PubMed  CAS  Google Scholar 

  6. Perl A, Wilgenbus P, Dahl U et al. A causal role for E-cadherin in the transition from adenoma to carcinoma. Nature 1998; 392:190–193.

    PubMed  CAS  Google Scholar 

  7. Conacci-Sorrell M, Zhurinsky J, Ben-Ze’ev A. The cadherin-catenin adhesion system in signaling and cancer. J Clin Invest 2002; 109:987–991.

    PubMed  CAS  Google Scholar 

  8. Jiang WG. E-cadherin and its associated protein catenins, cancer invasion and metastasis. Br J Surg 1996; 83:437–446.

    PubMed  CAS  Google Scholar 

  9. Papadavid E, Katsambas A. The interactions and role of epithelial cadherin and catenins in tumorigenicity. Int J Dermatol 2001; 40:254–257.

    PubMed  CAS  Google Scholar 

  10. Vleminckx K, Vakaet L, Mareel M et al. Genetic manipulation of E-cadherin expression by epithelial tumor cells reveals an invasion suppressor role. Cell 1991; 66:107–119.

    PubMed  CAS  Google Scholar 

  11. Ozawa M, Baribault H, Kemler R. The cytoplasmic domain of the cell adhesion molecule uvomorulin associates with three independent proteins structurally related in different species. EMBO J 1989; 8:1711–1717.

    PubMed  CAS  Google Scholar 

  12. Nagafuchi A, Ishihara S, Tsukita S. The roles of catenins in the cadherin-mediated cell adhesion: Functional analysis of E-cadherin-α catenin fusion molecules. J Cell Biol 1994; 127:235–245.

    PubMed  CAS  Google Scholar 

  13. Anastasiadis PZ, Reynolds AB. The p120 catenin family: Complex roles in adhesion, signaling and cancer. J Cell Sci 2000; 113:1319–1334.

    PubMed  CAS  Google Scholar 

  14. Hajra KM, Fearon ER. Cadherin and catenin alterations in human cancer. Genes Chromosomes Cancer 2002; 34:255–268.

    PubMed  CAS  Google Scholar 

  15. Hirano S, Kimoto N, Shimoyama Y et al. Identification of a neural α-catenin as a key regulator of cadherin function and multicellular organization. Cell 1992; 70:293–301.

    PubMed  CAS  Google Scholar 

  16. Oda T, Kanai Y, Shimoyama Y et al. Cloning of the human α-catenin cDNA and its aberrant mRNA in a human cancer cell line. Biochem Biophys Res Commun 1993; 193:897–904.

    PubMed  CAS  Google Scholar 

  17. Bullions L, Notterman D, Chung L et al. Expression of wild-type α-catenin protein in cells with a mutant α-catenin gene restores both growth regulation and tumor suppressor activities. Mol Cell Biol 1997; 17:4501–4508.

    PubMed  CAS  Google Scholar 

  18. Vasioukhin V, Bauer C, Degenstein L et al. Hyperproliferation and defects in epithelial polarity upon conditional ablation of α-catenin in skin. Cell 2001; 104:605–617.

    PubMed  CAS  Google Scholar 

  19. Oyama T, Kanai Y, Ochiai A et al. A truncated β-catenin disrupts the interaction between E-cadherin and α-catenin: A cause of loss of intercellular adhesiveness in human cancer cell lines. Cancer Res 1994; 54:6282–6287.

    PubMed  CAS  Google Scholar 

  20. Polakis P. Wnt signaling and cancer. Genes Dev 2000; 14:1837–1851.

    PubMed  CAS  Google Scholar 

  21. Bienz M, Clevers H. Linking colorectal cancer to Wnt signaling. Cell 2000; 103:311–320.

    PubMed  CAS  Google Scholar 

  22. Peifer M, Polakis P. Wnt signaling in oncogenesis and embryogenesis-a look outside the nucleus. Science 2000; 287:1606–1609.

    PubMed  CAS  Google Scholar 

  23. Behrens J, Jerchow B, Wurtele M et al. Functional interaction of an axin homolog, conductin, with β-catenin, APC, and GSK3β. Science 1998; 280:596–599.

    PubMed  CAS  Google Scholar 

  24. Kishida S, Yamamoto H, Ikeda S et al. Axin, a negative regulator of the wnt signaling pathway, directly interacts with adenomatous polyposis coli and regulates the stabilization of β-catenin. J Biol Chem 1998; 273:10823–10826.

    PubMed  CAS  Google Scholar 

  25. Ikeda S, Kishida S, Yamamoto H et al. Axin, a negative regulator of the Wnt signaling pathway, forms a complex with GSK-3P and β-catenin and promotes GSK-3β-dependent phosphorylation of β-catenin. EMBO J 1998; 17:1371–1384.

    PubMed  CAS  Google Scholar 

  26. Amit S, Hatzubai A, Birman Y et al. Axin-mediated CKI phosphorylation of β-catenin at Ser 45: A molecular switch for the Wnt pathway. Genes Dev 2002; 16:1066–1076.

    PubMed  CAS  Google Scholar 

  27. Liu C, Li Y, Semenov M et al. Control of β-catenin phosphorylation/degradation by a dual-kinase mechanism. Cell 2002; 108:837–847.

    PubMed  CAS  Google Scholar 

  28. Yanagawa S, Matsuda Y, Lee JS et al. Casein kinase I phosphorylates the Armadillo protein and induces its degradation in Drosophila. EMBO J 2002; 21:1733–1742.

    PubMed  CAS  Google Scholar 

  29. Polakis P. Casein kinase 1: A Wnt’er of disconnect. Curr Biol 2002; 12:R499–R501.

    PubMed  CAS  Google Scholar 

  30. Tolwinski NS, Wehrli M, Rives A et al. Wg/Wnt signal can be transmitted through arrow/LRP5,6 and Axin independently of Zw3/Gsk3β activity. Dev Cell 2003; 4:407–418.

    PubMed  CAS  Google Scholar 

  31. Bienz M, Clevers H. Armadillo/β-catenin signals in the nucleus—proof beyond a reasonable doubt? Nat Cell Biol 2003; 5:179–182.

    PubMed  CAS  Google Scholar 

  32. Hecht A, Litterst C, Huber O et al. Functional characterization of multiple transactivating elements in β-catenin, some of which interact with the TATA-binding protein in vitro. J Biol Chem 1999; 274:18017–18025.

    PubMed  CAS  Google Scholar 

  33. Hecht A, Vleminckx K, Stemmler M et al. The p300/CBP acetyltransferases function as transcriptional coactivators of β-catenin in vertebrates. EMBO J 2000; 19:1839–1850.

    PubMed  CAS  Google Scholar 

  34. Takemaru K, Yamaguchi S, Lee YS et al. Chibby, a nuclear β-catenin-associated antagonist of the Wnt/Wingless pathway. Nature 2003; 422:905–909.

    PubMed  CAS  Google Scholar 

  35. Wodarz A, Nusse R. Mechanisms of Wnt signaling in development. Annu Rev Cell Dev Biol 1998; 14:59–88.

    PubMed  CAS  Google Scholar 

  36. Polakis P. Mutations in the APC gene and their implications for protein structure and function. Curr Opin Genet Dev 1995; 5:66–71.

    PubMed  CAS  Google Scholar 

  37. Laurent-Puig P, Beroud C, Soussi T. APC gene: Database of germline and somatic mutations in human tumors and cell lines. Nucleic Acids Res 1998; 26:269–270.

    PubMed  CAS  Google Scholar 

  38. Satoh S, Daigo Y, Furukawa Y et al. AXIN1 mutations in hepatocellular carcinomas, and growth suppression in cancer cells by virus-mediated transfer of AXIN1. Nat Genet 2000; 24:245–250.

    PubMed  CAS  Google Scholar 

  39. Liu W, Dong X, Mai M et al. Mutations in AXIN2 cause colorectal cancer with defective mismatch repair by activating β-catenin/TCF signalling. Nat Genet 2000; 26:501.

    CAS  Google Scholar 

  40. Wu R, Zhai Y, Fearon ER et al. Diverse mechanisms of β-catenin deregulation in ovarian endometrioid adenocarcinomas. Cancer Res 2001; 61:8247–8255.

    PubMed  CAS  Google Scholar 

  41. Shtutman M, Zhurinsky J, Simcha I et al. The cyclin D1 gene is a target of the β-catenin/LEF-1 pathway. Proc Natl Acad Sci USA 1999; 96:5522–5527.

    PubMed  CAS  Google Scholar 

  42. Tetsu O, McCormick F. β-catenin regulates expression of cyclin D1 in colon carcinoma cells. Nature 1999; 398:422–426.

    PubMed  CAS  Google Scholar 

  43. He T, Sparks A, Rago C et al. Identification of c-MYC as a target of the APC pathway. Science 1998; 281:1509–1512.

    PubMed  CAS  Google Scholar 

  44. Pennica D, Swanson TA, Welsh JW et al. WISP genes are members of the connective tissue growth factor family that are up-regulated in wnt-1-transformed cells and aberrantly expressed in human colon tumors. Proc Natl Acad Sci USA 1998; 95:14717–14722.

    PubMed  CAS  Google Scholar 

  45. Xu L, Corcoran RB, Welsh JW et al. WTSP-1 is a Wnt-1-and β-catenin-responsive oncogene. Genes Dev 2000; 14:585–595.

    PubMed  CAS  Google Scholar 

  46. Su F, Overholtzer M, Besser D et al. WISP-1 attenuates p53-mediated apoptosis in response to DNA damage through activation of the Akt kinase. Genes Dev 2002; 16:46–57.

    PubMed  CAS  Google Scholar 

  47. Conacci-Sorrell ME, Ben-Yedidia T, Shtutman M et al. Nr-CAM is a target gene of the β-catenin/LEF-1 pathway in melanoma and colon cancer and its expression enhances motility and confers tumorigenesis. Genes Dev 2002; 16:2058–2072.

    PubMed  CAS  Google Scholar 

  48. Gradl D, Kuhl M, Wedlich D. The Wnt/Wg signal transducer β-catenin controls fibronectin expression. Mol Cell Biol 1999; 19:5576–5587.

    PubMed  CAS  Google Scholar 

  49. Hlubek F, Jung A, Kotzor N et al. Expression of the invasion factor laminin γ2 in colorectal carcinomas is regulated by β-catenin. Cancer Res 2001; 61:8089–8093.

    PubMed  CAS  Google Scholar 

  50. Crawford H, Fingleton B, Rudolph-Owen L et al. The metalloproteinase matrilysin is a target of β-catenin transactivation in intestinal tumors. Oncogene 1999; 18:2883–2891.

    PubMed  CAS  Google Scholar 

  51. Brabletz T, Jung A, Dag S et al. β-catenin regulates the expression of the matrix metalloproteinase-7 in human colorectal cancer. Am J Pathol 1999; 155:1033–1038.

    PubMed  CAS  Google Scholar 

  52. Takahashi M, Tsunoda T, Seiki M et al. Identification of membrane-type matrix metalloproteinase-1 as a target of the β-catenin/Tcf4 complex in human colorectal cancers. Oncogene 2002; 21:5861–5867.

    PubMed  CAS  Google Scholar 

  53. MacDougall JR, Matrisian LM. Contributions of tumor and stromal matrix metalloproteinases to tumor progression, invasion and metastasis. Cancer Metastasis Rev 1995; 14:351–362.

    PubMed  CAS  Google Scholar 

  54. Zhang X, Gaspard JP, Chung DC. Regulation of vascular endothelial growth factor by the Wnt and K-ras pathways in colonic neoplasia. Cancer Res 2001; 61:6050–6054.

    PubMed  CAS  Google Scholar 

  55. Yamada T, Takaoka A, Naishiro Y et al. Transactivation of the multidrug resistance 1 gene by T-cell factor 4/β-catenin complex in early colorectal carcinogenesis. Cancer Res 2000; 60:4761–4766.

    PubMed  CAS  Google Scholar 

  56. Roose J, Huls G, van Beest M et al. Synergy between tumor suppressor APC and the β-catenin-Tcf4 target Tcf1. Science 1999; 285:1923–1926.

    PubMed  CAS  Google Scholar 

  57. Hovanes K, Li T, Munguia J et al. β-catenin-sensitive isoforms of lymphoid enhancer factor-1 are selectively expressed in colon cancer. Nat Genet 2001; 28:53–57.

    PubMed  CAS  Google Scholar 

  58. Peifer M. Developmental biology: Colon construction. Nature 2002; 420:274–275, 277.

    PubMed  CAS  Google Scholar 

  59. Korinek V, Barker N, Moerer P et al. Depletion of epithelial stem-cell compartments in the small intestine of mice lacking Tcf-4. Nat Genet 1998; 19:379–383.

    PubMed  CAS  Google Scholar 

  60. van de Wetering M, Sancho E, Verweij C et al. The β-catenin/TCF-4 complex imposes a crypt progenitor phenotype on colorectal cancer cells. Cell 2002; 111:241–250.

    PubMed  Google Scholar 

  61. Batlle E, Henderson JT, Beghtel H et al. β-catenin and TCF mediate cell positioning in the intestinal epithelium by controlling the expression of EphB/ephrinB. Cell 2002; 111:251–263.

    PubMed  CAS  Google Scholar 

  62. Reya T, Duncan AW, Ailles L et al. A role for Wnt signalling in self-renewal of haematopoietic stem cells. Nature 2003; In press PMID 12717451.

    Google Scholar 

  63. Willert K, Brown JD, Danenberg E et al. Wnt proteins are lipid-modified and can act as stem cell growth factors. Nature 2003; In press PMID 12717450.

    Google Scholar 

  64. Lowe SW. Activation of p53 by oncogenes. Endocr Relat Cancer 1999; 6:45–48.

    PubMed  CAS  Google Scholar 

  65. Sherr CJ, Weber JD. The ARF/p53 pathway. Curr Opin Genet Dev 2000; 10:94–99.

    PubMed  CAS  Google Scholar 

  66. Oren M, Damalas A, Gottlieb T et al. Regulation of p53: Intricate loops and delicate balances. Ann NY Acad Sci 2002; 973:374–383.

    Article  PubMed  CAS  Google Scholar 

  67. Damalas A, Ben-Ze’ev A, Simcha I et al. Excess β-catenin promotes accumulation of transcriptionally active p53. EMBO J 1999; 18:3054–3063.

    PubMed  CAS  Google Scholar 

  68. Damalas A, Kahan S, Shtutman M et al. Deregulated β-catenin induces a p53-and ARF-dependent growth arrest and cooperates with Ras in transformation. EMBO J 2001; 20:4912–4922.

    PubMed  CAS  Google Scholar 

  69. Kinzler KW, Vogelstein B. Lessons from hereditary colorectal cancer. Cell 1996; 87:159–170.

    PubMed  CAS  Google Scholar 

  70. Esteller M, Tortola S, Toyota M et al. Hypermethylation-associated inactivation of p14(ARF) is independent of pl6(INK4a) methylation and p53 mutational status. Cancer Res 2000; 60:129–133.

    PubMed  CAS  Google Scholar 

  71. Sadot E, Geiger B, Oren M et al. Down-regulation of β-catenin by activated p53. Mol Cell Biol 2001; 21:6768–6781.

    PubMed  CAS  Google Scholar 

  72. Liu J, Stevens J, Rote C et al. Siah-1 mediates a novel β-catenin degradation pathway linking p53 to the adenomatous polyposis coli protein. Mol Cell 2001; 7:927–936.

    PubMed  CAS  Google Scholar 

  73. Matsuzawa S, Reed J. Siah-1, SIP, and Ebi collaborate in a novel pathway for β-catenin degradation linked to p53 responses. Mol Cell 2001; 7:915–926.

    PubMed  CAS  Google Scholar 

  74. Shtutman M, Zhurinsky J, Oren M et al. PML is a target gene of β-catenin and plakoglobin, and coactivates β-catenin-mediated transcription. Cancer Res 2002; 62:5947–5954.

    PubMed  CAS  Google Scholar 

  75. Ferbeyre G, de Stanchina E, Querido E et al. PML is induced by oncogenic ras and promotes premature senescence. Genes Dev 2000; 14:2015–2027.

    PubMed  CAS  Google Scholar 

  76. Pearson M, Carbone R, Sebastiani C et al. PML regulates p53 acetylation and premature senescence induced by oncogenic Ras. Nature 2000; 406:207–210.

    PubMed  CAS  Google Scholar 

  77. Zhurinsky J, Shtutman M, Ben-Ze’ev A. Plakoglobin and β-catenin: Protein interactions, regulation and biological roles. J Cell Sci 2000; 113:3127–3139.

    PubMed  CAS  Google Scholar 

  78. Miller J, Moon R. Analysis of the signaling activities of localization mutants of β-catenin during axis specification in Xenopus. J Cell Biol 1997; 139:229–243.

    PubMed  CAS  Google Scholar 

  79. Simcha I, Shtutman M, Salomon D et al. Differential nuclear translocation and transactivation potential of β-catenin and plakoglobin. J Cell Biol 1998; 141:1433–1448.

    PubMed  CAS  Google Scholar 

  80. Zhurinsky J, Shtutman M, Ben-Ze’ev A. Differential mechanisms of LEF/TCF family-dependent transcriptional activation by β-catenin and plakoglobin. Mol Cell Biol 2000; 20:4238–4252.

    PubMed  CAS  Google Scholar 

  81. Miravet S, Piedra J, Miro F et al. The transcriptional factor Tcf-4 contains different binding sites for β-catenin and plakoglobin. J Biol Chem 2002; 277:1884–1891.

    PubMed  CAS  Google Scholar 

  82. Aberle H, Bierkamp C, Torchard D et al. The human plakoglobin gene localizes on chromosome 17q21 and is subjected to loss of heterozygosity in breast and ovarian cancers. Proc Natl Acad Sci USA 1995; 92:6384–6388.

    PubMed  CAS  Google Scholar 

  83. Simcha I, Geiger B, Yehuda-Levenberg S et al. Suppression of tumorigenicity by plakoglobin: An augmenting effect of N-cadherin. J Cell Biol 1996; 133:199–209.

    PubMed  CAS  Google Scholar 

  84. Haegel H, Larue L, Ohsugi M et al. Lack of β-catenin affects mouse development at gastrulation. Development 1995; 121:3529–3537.

    PubMed  CAS  Google Scholar 

  85. Bierkamp C, Mclaughlin K, Schwarz H et al. Embryonic heart and skin defects in mice lacking plakoglobin. Dev Biol 1996; 180:780–785.

    PubMed  CAS  Google Scholar 

  86. Ruiz P, Brinkmann V, Ledermann B et al. Targeted mutation of plakoglobin in mice reveals essential functions of desmosomes in the embryonic heart. J Cell Biol 1996; 135:215–225.

    PubMed  CAS  Google Scholar 

  87. Gat U, DasGupta R, Degenstein L et al. De Novo hair follicle morphogenesis and hair tumors in mice expressing a truncated β-catenin in skin. Cell 1998; 95:605–614.

    PubMed  CAS  Google Scholar 

  88. Charpentier E, Lavker R, Acquista E et al. Plakoglobin suppresses epithelial proliferation and hair growth in vivo. J Cell Biol 2000; 149:503–520.

    PubMed  CAS  Google Scholar 

  89. Kolligs F, Kolligs B, Hajra K et al. γ-catenin is regulated by the APC tumor suppressor and its oncogenic activity is distinct from that of β-catenin. Genes Dev 2000; 14:1319–1331.

    PubMed  CAS  Google Scholar 

  90. Heasman J, Crawford A, Goldstone K et al. Overexpression of cadherins and underexpression of β-catenin inhibit dorsal mesoderm induction in early Xenopus embryos. Cell 1994; 79:791–803.

    PubMed  CAS  Google Scholar 

  91. Fagotto F, Funayama N, Gluck U et al. Binding to cadherins antagonizes the signaling activity of β-catenin during axis formation in Xenopus. J Cell Biol 1996; 132:1105–1114.

    PubMed  CAS  Google Scholar 

  92. Sadot E, Simcha I, Shtutman M et al. Inhibition of β-catenin-mediated transactivation by cadherin derivatives. Proc Natl Acad Sci USA 1998; 95:15339–15344.

    PubMed  CAS  Google Scholar 

  93. Orsulic S, Huber O, Aberle H et al. E-cadherin binding prevents β-catenin nuclear localization and P-catenin/LEF-1-mediated transactivation. J Cell Sci 1999; 112:1237–1245.

    PubMed  CAS  Google Scholar 

  94. Gottardi C, Wong E, Gumbiner B. E-cadherin suppresses cellular transformation by inhibiting β-catenin signaling in an adhesion independent manner. J Cell Biol 2001; 153:1049–1060.

    PubMed  CAS  Google Scholar 

  95. Stockinger A, Eger A, Wolf J et al. E-cadherin regulates cell growth by modulating proliferation-dependent β-catenin transcriptional activity. J Cell Biol 2001; 154:1185–1196.

    PubMed  CAS  Google Scholar 

  96. Caca K, Kolligs F, Ji X et al. β-and γ-catenin mutations, but not E-cadherin inactivation, underlie T-cell factor/lymphoid enhancer factor transcriptional deregulation in gastric and pancreatic can cer. Cell Growth Differ 1999; 10:369–376.

    PubMed  CAS  Google Scholar 

  97. van de Wetering M, Barker N, Harkes I et al. Mutant E-cadherin breast cancer cells do not display constitutive Wnt signaling. Cancer Res 2001; 61:278–284.

    PubMed  Google Scholar 

  98. Brabletz T, Jung A, Reu S et al. Variable β-catenin expression in colorectal cancers indicates tumor progression driven by the tumor environment. Proc Natl Acad Sci USA 2001; 98:10356–10361.

    PubMed  CAS  Google Scholar 

  99. Barker N, Clevers H. Tumor environment: A potent driving force in colorectal cancer? Trends Mol Med 2001; 7:535–537.

    PubMed  CAS  Google Scholar 

  100. Conacci-Sorrell M, Simcha I, Ben-Yedidia T et al. Autoregulation of E-cadherin expression by cadherin-cadherin interactions: The roles of β-catenin signaling, Slug and ERK. Cell Biol 2003; 163:847–857.

    CAS  Google Scholar 

  101. Jamora C, DasGupta R, Kocieniewski P et al. Links between signal transduction, transcription and adhesion in epithelial bud development. Nature 2003; 422:317–322.

    PubMed  CAS  Google Scholar 

  102. Kinch M, Clark G, Der C et al. Tyrosine phosphorylation regulates the adhesions of ras-transformed breast epithelia. J Cell Biol 1995; 130:461–471.

    PubMed  CAS  Google Scholar 

  103. Roura S, Miravet S, Piedra J et al. Regulation of E-cadherin/Catenin association by tyrosine phosphorylation. J Biol Chem 1999; 274:36734–36740.

    PubMed  CAS  Google Scholar 

  104. Piedra J, Martinez D, Castano J et al. Regulation of β-catenin structure and activity by tyrosine phosphorylation. J Biol Chem 2001; 276:20436–20443.

    PubMed  CAS  Google Scholar 

  105. Piedra J, Miravet S, Castano J et al. p120 Catenin-associated Fer and Fyn tyrosine kinases regulate β-catenin Tyr-142 phosphorylation and β-catenin-α-catenin interaction. Mol Cell Biol 2003; 23:2287–2297.

    PubMed  CAS  Google Scholar 

  106. Matsuyoshi N, Hamaguchi M, Taniguchi S et al. Cadherin-mediated cell-cell adhesion is per turbed by v-src tyrosine phosphorylation in metastatic fibroblasts. J Cell Biol 1992; 118:703–714.

    PubMed  CAS  Google Scholar 

  107. Behrens J, Vakaet L, Friis R et al. Loss of epithelial differentiation and gain of invasiveness correlates with tyrosine phosphorylation of the E-cadherin/β-catenin complex in cells transformed with a temperaturesensitive v-SRC gene. J Cell Biol 1993; 120:757–766.

    PubMed  CAS  Google Scholar 

  108. Savagner P. Leaving the neighborhood: Molecular mechanisms involved during epithelial-mesenchymal transition. BioEssays 2001; 23:912–923.

    PubMed  CAS  Google Scholar 

  109. Hay E. An overview of epithelio-mesenchymal transformation. Acta Anat (Basel) 1995; 154:8–20.

    CAS  Google Scholar 

  110. Shibamoto S, Hayakawa M, Takeuchi K et al. Tyrosine phosphorylation of β-catenin and plakoglobin enhanced by hepatocyte growth factor and epidermal growth factor in human carcinoma cells. Cell Adhes Commun 1994; 1:295–305.

    PubMed  CAS  Google Scholar 

  111. Hoschuetzky H, Aberle H, Kemler R. β-catenin mediates the interaction of the cadherin-catenin complex with epidermal growth factor receptor. J Cell Biol 1994; 127:1375–1380.

    PubMed  CAS  Google Scholar 

  112. Crepaldi T, Pollack A, Prat M et al. Targeting of the SF/HGF receptor to the basolateral domain of polarized epithelial cells. J Cell Biol 1994; 125:313–320.

    PubMed  CAS  Google Scholar 

  113. Potempa S, Ridley A. Activation of both MAP kinase and phosphatidylinositide 3-kinase by Ras is required for hepatocyte growth factor/scatter factor-induced adherens junction disassembly. Mol Biol Cell 1998; 9:2185–2200.

    PubMed  CAS  Google Scholar 

  114. Lickert H, Bauer A, Kemler R et al. Casein kinase II phosphorylation of E-cadherin increases E-cadherin/β-catenin interaction and strengthens cell-cell adhesion. J Biol Chem 2000; 275:5090–5095.

    PubMed  CAS  Google Scholar 

  115. Simcha I, Kirkpatrick C, Sadot E et al. Cadherin sequences that inhibit β-catenin signaling: A study in yeast and mammalian cells. Mol Biol Cell 2001; 12:1177–1188.

    PubMed  CAS  Google Scholar 

  116. Daniel J, Reynolds A. Tyrosine phosphorylation and cadherin/catenin function. BioEssays 1997; 19:883–891.

    PubMed  CAS  Google Scholar 

  117. Takahashi K, Suzuki K. Density-dependent inhibition of growth involves prevention of EGF receptor activation by E-cadherin-mediated cell-cell adhesion. Exp Cell Res 1996; 226:214–222.

    PubMed  CAS  Google Scholar 

  118. St Croix B, Sheehan C, Rak JW et al. E-Cadherin-dependent growth suppression is mediated by the cyclin-dependent kinase inhibitor p27(KIPl). J Cell Biol 1998; 142:557–571.

    PubMed  CAS  Google Scholar 

  119. Nieman M, Prudoff R, Johnson K et al. N-cadherin promotes motility in human breast cancer cells regardless of their E-cadherin expression. J Cell Biol 1999; 147:631–644.

    PubMed  CAS  Google Scholar 

  120. Hazan R, Phillips G, Qiao R et al. Exogenous expression of N-cadherin in breast cancer cells induces cell migration, invasion, and metastasis. J Cell Biol 2000; 148:779–790.

    PubMed  CAS  Google Scholar 

  121. Williams E, Williams G, Howell F et al. Identification of an N-cadherin motif that can interact with the fibroblast growth factor receptor and is required for axonal growth. J Biol Chem 2001; 276:43879–43886.

    PubMed  CAS  Google Scholar 

  122. Suyama K, Shapiro I, Guttman M et al. A signaling pathway leading to metastasis is controlled by N-cadherin and the FGF receptor. Cancer Cell 2002; 2:301–314.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Eurekah.com and Kluwer Academic / Plenum Publishers.

About this chapter

Cite this chapter

Conacci-Sorrell, M., Ben-Ze’ev, A. (2005). The Regulation of Catenins in Cancer. In: Rise and Fall of Epithelial Phenotype. Molecular Biology Intelligence Unit. Springer, Boston, MA. https://doi.org/10.1007/0-387-28671-3_12

Download citation

Publish with us

Policies and ethics