Skip to main content

Composition, Applications, Fractionation, Technological and Nutritional Significance of Milk Fat Globule Membrane Material

  • Chapter
Advanced Dairy Chemistry Volume 2 Lipids

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  • Anderson, M., Cawston, T.E. 1975. Reviews of the Progress of Dairy Science. The milk-fat globule membrane. J. Dairy Res. 42, 459–483.

    CAS  Google Scholar 

  • Anderson, M., Cheeseman, G.C., Knight, D.J., Shipe, W.F. 1972. The Effect of aging cooled milk on the composition of the fat globule membrane. J. Dairy Res. 39, 95–105.

    CAS  Google Scholar 

  • Antila, M., Ali-Yrkko, S., Antila, V., Antila, P., Ronnemaa, T., Jarvelainen, H., Viikari, J. 1980. Is fat globule membrane essential for cholesterol-lowering effect of milk? Lancet. 1, 602.

    Article  CAS  Google Scholar 

  • Astaire, J.C., Ward, R., German, J.B., Jiménez-Flores, R. 2003. Concentration of polar MFGM lipids from buttermilk by microfiltration and supercritical fluid extraction. J. Dairy Sci. 86, 2297–2307.

    CAS  Google Scholar 

  • Berdel, W.E. 1991. Membrane-interactive lipids as experimental anticancer drugs. Br. J. Cancer. 64, 208–11.

    CAS  Google Scholar 

  • Bernback, S., Blackberg, L., Hernell, O. 1989. The complete digestion of human milk triacylglycerol in vitro requires gastric lipase, pancreatic colipase-dependent lipase, and bile salt-stimulated lipase. J. Clin. Invest. 85, 1221–1226.

    Google Scholar 

  • Berra, B., Colombo, I., Sottocornola, E., Giacosa, A. 2002. Dietary sphingolipids in colorectal cancer prevention. Eur. J. Cancer Prev. 11, 193–197.

    Article  CAS  Google Scholar 

  • Blank, M.L., Cress, E.A., Smith, Z.L., Snyder, F. 1991. Dietary supplementation with etherlinked lipids and tissue lipid composition. Lipids. 26, 166–169.

    Article  CAS  Google Scholar 

  • Boyd, L.C., Drye, N.C., Hansen, A.P. 1999. Isolation and characterization of whey phospholipids. J. Dairy Sci. 82, 2550–2557.

    Article  CAS  Google Scholar 

  • Charlwood, J., Hanrahan, S., Tyldesley, R., Langridge, J., Dwek, M., Camilleri, P. 2002. Use of proteomic methodology for the characterization of human milk fat globular membrane proteins. Anal. Biochem. 301, 314–324.

    Article  CAS  Google Scholar 

  • Chazelas, S., Razafindralambo, H., de Chassart, Q.D., Paquot, M. 1995. Surface properties of the milk fat globule membrane: competition between casein and membrane material. In: Food Macromolecules and Colloids (E. Dickinson, D. Lorient, eds.), pp. 95–98, The Royal Society of Chemistry, Cambridge.

    Google Scholar 

  • Chen, H., Born, E., Mathur, S.N., Johlin, F.C., Jr., Field, F.J. 1992. Sphingomyelin content of intestinal cell membranes regulates cholesterol absorption. Evidence for pancreatic and intestinal cell sphingomyelinase activity. Biochem. J. 286, 771–777.

    CAS  Google Scholar 

  • Corredig, M., Dalgleish, D.G. 1996. Effect of different heat treatments on the strong binding interactions between whey proteins and milk fat globules in whole milk. J. Dairy Res. 63, 441–449.

    CAS  Google Scholar 

  • Corredig, M., Dalgleish, D.G. 1997. Studies on the susceptibility of membrane-derived proteins to proteolysis as related to changes in their emulsifying properties. Food Res. Int. 30, 689–697.

    Article  CAS  Google Scholar 

  • Corredig, M., Dalgleish, D.G. 1998a. Buttermilk properties in emulsions with soybean oil as a affected by fat globule membrane-derived proteins. J. Food Sci. 63, 476–480.

    Article  CAS  Google Scholar 

  • Corredig, M., Dalgleish, D.G. 1998b. Effect of heating of cream on the properties of milk fat globule membrane isolates. J. Agric. Food Chem. 46, 2533–2540.

    Article  CAS  Google Scholar 

  • Corredig, M., Dalgleish, D.G. 1998c. Characterization of the interface of an oil-in-water emulsion stabilized by milk fat globule membrane material. J. Dairy Res. 65, 465–477.

    Article  CAS  Google Scholar 

  • Corredig, M., Roesch, R.R., Dalgleish, D.G. 2003. Production of a novel ingredient from buttermilk. J. Dairy Sci. 86, 2744–2750.

    CAS  Google Scholar 

  • Dalgleish, D.G., Banks, J.M. 1991. The formation of complexes between serum proteins and fat globules during heating of whole milk. Milchwissenschaft. 46, 75–78.

    CAS  Google Scholar 

  • Danthine, S., Blecker, C., Paquot, M., Innocente, N., Deroanne, C. 2000. Évolution des connaissances sur la membrane du globule gras du lait: synthése bibliographique. Lait. 80, 209–222.

    Article  CAS  Google Scholar 

  • Das, A.K., Holmes, R.D., Wilson, G.N., Hajra, A.K. 1992. Dietary ether lipid incorporation into tissue plasmalogens of humans and rodents. Lipids. 27, 401–405.

    Article  CAS  Google Scholar 

  • Dewettinck, K., Boone, M. 2002. Method for obtaining products enriched in phospho-and sphingolipids. International patent WO0234062

    Google Scholar 

  • Dial, E.J., Lichtenberger, L.M. 1984. A role for milk phospholipids in protection against gastric acid. Studies in adult and suckling rats. Gastroenterology. 87, 379–385.

    CAS  Google Scholar 

  • Dillehay, D.L., Webb, S.K., Schmelz, E.M., Merrill, A.H. Jr. 1994. Dietary sphingomyelin inhibits 1,2-dimethylhydrazine-induced colon cancer in CF1 mice. J. Nutr. 124, 615–620.

    CAS  Google Scholar 

  • Diomede, L., Colotta, F., Piovani, B., Re, F., Modest, E.J., Salmona, M. 1993. Induction of apoptosis in human leukemic cells by the ether lipid 1-octadecyl-2-methyl-rac-glycero-3-phosphocholine. A possible basis for its selective action. Int. J. Cancer. 53, 124–130.

    Article  CAS  Google Scholar 

  • Duan, R.D. 1998. Sphingomyelin hydrolysis in the gut and clinical implications in colorectal tumorigenesis and other gastrointestinal diseases. Scand. J. Gastroenterol. 33, 673–683.

    Article  CAS  Google Scholar 

  • Eckhardt, E.R., Wang, D.Q., Donovan, J.M., Carey, M.C. 2002. Dietary sphingomyelin suppresses intestinal cholesterol absorption by decreasing thermodynamic activity of cholesterol monomers. Gastroenterology. 122, 948–956.

    Article  CAS  Google Scholar 

  • Evers, J.M. 2004. The milk fat globule membrane — compositional and structural changes post secretion by the mammary secretory cell. Int. Dairy J. 14, 661–674.

    Article  CAS  Google Scholar 

  • Fortunato, D., Giuffrida, M.G., Cavaletto, M., Garoffo, L.P., Dellavalle, G., Napolitano, L., Giunta, C., Fabris, C., Bertino, E., Coscia, A., Conti, A. 2003. Structural proteome of human colostral fat globule membrane proteins. Proteomics. 3, 897–905.

    Article  CAS  Google Scholar 

  • Fryksdale, B.G., Jiménez-Flores, R. 2001. Modification of buttermilk functionality with a biosilicate adsorption process. IFT Annual Meeting Technical Abstracts. pp. 209.

    Google Scholar 

  • Goldman, A.S. 2002. Evolution of the mammary gland defense system and the ontogeny of the immune system. J. Mamm. Gland Biol. Neoplasia. 7, 277–289.

    Article  Google Scholar 

  • Green, D.E., Pauli, R. 1943. The antibacterial action of the Xanthine oxidoreductase system. Proc. Soc. Exp. Biol. Med. 54, 1053–1055.

    Google Scholar 

  • Hallgren, B., Larsson, S. 1962. The glyceryl ethers in man and cow. J. Lipid Res. 3, 39–43.

    CAS  Google Scholar 

  • Hallgren, B., Niklasson, A., Stallberg, G., Thorin, H. 1974. On the occurrence of 1-O-alkylglycerols and 1-O-(2-methoxyalkyl)glycerols in human colostrum, human milk, cow’s milk, sheep’s milk, human red bone marrow, red cells, blood plasma and a uterine carcinoma. Acta Chem. Scand. 28, 1029–34.

    CAS  Google Scholar 

  • Hancock, J.T., Salisbury, V., Ovejero-Boglione, M.C., Cherry, R., Hoare, C., Eisenthal, R., Harrison, R. 2002. Antimicrobial properties of milk: dependence on presence of Xanthine oxidoreductase and nitrite. Antimicrob. Agents Chemother. 46, 3308–3310.

    Article  CAS  Google Scholar 

  • Hannun, Y.A., Obeid, L.M. 2002. The ceramide-centric universe of lipid-mediated cell regulation: Stress encounters of the lipid kind. J. Biol Chem. 277, 25847–25850.

    Article  CAS  Google Scholar 

  • Hoskins, L.C. 1992. Mucin degradation in the human gastrointestinal tract and its significance to enteric microbial ecology. Eur. J. Gastroenterol. Hepatol. 5, 205–213.

    Article  Google Scholar 

  • Howard, A.N., Marks, J. 1977. Hypocholesterolaemic effect of milk. Lancet. 2, 255–256.

    Article  CAS  Google Scholar 

  • Hussi, E., Miettinen, T.A., Ollus, A., Kostiainen, E., Ehnholm, C., Haglund, B., Huttunen, J.K., Manninen, V. 1981. Lack of serum cholesterol-lowering effect of skimmed milk and butter milk under controlled conditions. Atherosclerosis. 39, 267–272.

    Article  CAS  Google Scholar 

  • Huston, G.E., Patton, S. 1990. Factors related to the formation of cytoplasmic crescents on milk fat globules. J. Dairy Sci. 73, 2061–2066.

    Article  CAS  Google Scholar 

  • Ikonen, E. 2001. Roles of lipid rafts in membrane transport. Curr. Opin. Cell Biol. 13, 470–477.

    Article  CAS  Google Scholar 

  • Imaizumi, K., Tominaga, A., Sato, M. Sugano, M., 1992. Effects of dietary sphingolipids on levels of serum and liver lipids in rats. Nutr. Res. 12, 543–548.

    Article  CAS  Google Scholar 

  • Ito, O., Kamata, S., Hayashi, M., Ushiyama, K. 1993. Milk fat globule membrane substances inhibit mouse intestinal β-glucuronidase. J. Food Sci. 58, 753–755.

    Article  CAS  Google Scholar 

  • Jensen, R.G. 1989. In: The Lipids of Human Milk. CRC Press, Inc., Boca Raton, Florida.

    Google Scholar 

  • Jensen, R.G. 2002. The composition of bovine milk lipids: January 1995 to December 2000. J. Dairy Sci. 85, 295–350.

    Article  CAS  Google Scholar 

  • Kanno, C. 1989. Emulsifying properties of bovine milk fat globule membrane in milk fat emulsion: conditions for the reconstitution of milk fat globules. J. Food Sci. 54, 1534–1539.

    Article  CAS  Google Scholar 

  • Kanno, C. 1990. Secretory membranes of the lactating mammary gland. Protoplasma. 159, 184–208.

    Article  CAS  Google Scholar 

  • Kanno, C., Shimomura, Y., Takano, E. 1991. Physicochemical properties of milk fat emulsions stabilized with bovine milk fat globule membrane. J. Food Sci. 56, 1219–1223.

    Article  CAS  Google Scholar 

  • Keenan, T., Patton, S. 1995. The structure of milk: implications for sampling and storage A. The milk lipid globular membrane. In: Handbook of Milk Composition (R.G. Jensen, ed.), pp. 5–44, Academic Press, Inc., San Diego.

    Google Scholar 

  • Keenan, T.W., Mather, I.H. 2002. Milk fat globule membrane. In: Encyclopedia of Dairy Science (H. Roginski, J.W. Fuquay, P.F. Fox., eds.), pp. 1568–1576, Adademic Press, London.

    Google Scholar 

  • Kim, H.-H.Y., Jiménez-Flores, R. 1995. Heat-induced interactions between the proteins of milk fat globule membrane and skim milk. J. Dairy Sci. 78, 24–35.

    CAS  Google Scholar 

  • Kivinen, A., Tarpila, S., Salminen, S., Vapaatalo, H. 1992. Gastroprotection with milk phospholipids: a first human study. Milchwissenschaft. 47, 694–696.

    CAS  Google Scholar 

  • Kobayashi, T., Shimizugawa, T., Osakabe, T., Watanabe, S., Okuyama, H. 1997. A long-term feeding of sphingolipids affected the levels of plasma cholesterol and hepatic triacylglycerol but not tissue phospholipids and sphingolipids. Nutr. Res. 17, 111–114.

    Article  CAS  Google Scholar 

  • Lauer, K. 1997. Diet and multiple sclerosis. Neurology. 49, S55–61.

    CAS  Google Scholar 

  • Lee, S.J., Sherbon, J.W. 2002. Chemical changes in bovine milk fat globule membrane caused by heat treatment and homogenization of whole milk. J. Dairy Res. 69, 555–567.

    Article  CAS  Google Scholar 

  • Lipmann, F., Owen, C.R. 1943. The antibacterial effect of enzymatic xanthine oxidation. Science. 98, 246–248.

    Article  CAS  Google Scholar 

  • Malmsten, M., Bergenstahl, B., Nyberg, L., Odham, G. 1994. Shingomyelin from milk — characterization of liquid crystalline, liposome and emulsion properties. J. Amer. Oil Chemist Soc. 71, 1021–1026.

    Article  CAS  Google Scholar 

  • Mana, P., Goodyear, M., Bernard, C., Tomioka, R., Freire-Garabal, M., Linares, D. 2004. Tolerance induction by molecular mimicry: prevention and suppression of experimental autoimmune encephalomyelitis with the milk protein butyrophilin. Int Immunol. 16, 489–499.

    Article  CAS  Google Scholar 

  • Mann, G.V. 1977. Hypocholesterolaemic effect of milk. Lancet. 2, 556.

    Article  CAS  Google Scholar 

  • Mather, I.H. 2000. A review and proposed nomenclature for major proteins of the milk-fat globule membrane. J. Dairy Sci. 83, 203–247.

    CAS  Google Scholar 

  • Mather, I.H., Kennan, T.W. 1998. Origin and secretion of milk lipids. J. Mamm. Gland Biol. Neoplasia. 3, 259–273.

    Article  CAS  Google Scholar 

  • McManaman, J.L., Palmer, C.A., Wright, R.M., Neville, M.C. 2002. Functional regulation of Xanthine oxidoreductase expression and localization in the mouse mammary gland: evidence of a role in lipid secretion. J. Physiol. 545, 567–579.

    Article  CAS  Google Scholar 

  • McPherson, A.V., Dash, M.C., Kitchen, B.J. 1984. Isolation of bovine milk fat globule membrane material from cream without prior removal of caseins and whey proteins. J. Dairy Res. 51, 113–122.

    CAS  Google Scholar 

  • McPherson, A.V., Kitchen, B.J. 1983. Reviews of the Progress of Dairy Science: The bovine milk fat globule membrane — its formation, composition, structure and behaviour in milk and dairy products. J. Dairy Res. 50, 107–133.

    CAS  Google Scholar 

  • Merrill, A.H., Jr., Schmelz, E.M., Sullards, M.C., Dillehay, D.L. 2001. Sphingolipids: novel inhibitors of colon carcinogenesis. Bulletin 363, International Dairy Federation, Brussels, pp. 27–29.

    Google Scholar 

  • Merrill, A.H., Jr. 2002. De novo sphingolipid biosynthesis: A necessary, but dangerous, pathway. J. Biol. Chem. 277, 25843–25846.

    Article  CAS  Google Scholar 

  • Midtvedt, A.C., Carlstedt-Duke, B., Midtvedt, T. 1994. Establishment of a mucin-degrading intestinal microflora during the first two years of human life. J. Pediatr. Gastroenterol. Nutr. 3, 321–326.

    Article  Google Scholar 

  • Mistry, V.V., Mabouis, J.L. 1993. Application of membrane separation technology to cheese production. In: Cheese: Chemistry, Physics and Microbiology. Vol. 1, General Aspects (P.F. Fox, ed.), pp. 493–522, Chapman and Hall, London.

    Google Scholar 

  • Mistry, V.V., Metzger, L.E., Maubois, J.L. 1996. Use of ultrafiltered sweet buttermilk in the manufacture of reduced fat Cheddar cheese. J. Dairy Sci. 79, 1137–1145.

    CAS  Google Scholar 

  • Mondy, B.L., Keenan, T.W. 1993. Bytyrophilin and Xanthine oxidoreductase occur in constant molar proportions in milk lipid globule membrane but vary in amount with breed and stage of lactation. Protoplasma. 177, 32–36.

    Article  CAS  Google Scholar 

  • Morin, P., Jiménez-Flores, R., Pouliot, Y. 2004. Effect of temperature and pore size on the fractionation of fresh and reconstituted buttermilk by microfiltration. J. Dairy Sci. 87, 267–273.

    CAS  Google Scholar 

  • Morley, R. 1943. The influence of early diet on later development. J. Biosoc. Sci. 28, 481–487.

    Google Scholar 

  • Motouri, M., Matsuyama, H., Yamamura, J., Tanaka, M., Aoe, S., Iwanga, T., Kawakami, H. 2003. Milk sphingomyelin accelerates enzymatic and morphological maturation of the intestine in artificially reared rats. J. Pediat. Gastroenterol. Nutr. 36, 241–247.

    Article  CAS  Google Scholar 

  • O’Connell, J.E., Fox, P.F. 2000. Heat stability of buttermilk. J. Dairy Sci. 83, 1728–1732.

    CAS  Google Scholar 

  • Oshida, K., Shimizu, T., Takase, M., Tamura, Y., Shimizu, T., Yamashiro, Y. 2003. Effects of dietary sphingomyelin on central nervous system myelination in developing rats. Pediatr. Res. 53, 589–593.

    Article  CAS  Google Scholar 

  • Parodi, P.W. 1996. Milk fat components: possible chemopreventive agents for cancer and other diseases. Aust. J. Dairy Technol. 51, 24–31.

    CAS  Google Scholar 

  • Parodi, P.W. 1997. Cows’ milk fat components as potential anticarcinogenic agents. J. Nutr. 127, 1055–1060.

    CAS  Google Scholar 

  • Patton, S. 1994. Detection of large fragments of the human milk mucin MUC-1 in feces of breast-fed infants. J. Pediatr. Gastroenterol. Nutr. 2, 225–230.

    Article  Google Scholar 

  • Patton, S. 1999. Some practical implications of the milk mucins. J Dairy Sci. 82, 1115–1117.

    CAS  Google Scholar 

  • Patton, S., Gendler, S.J., Spicer, A.P. 1995. The epithelial mucin, MUC1, of milk, mammary gland and other tissues. Biochim. Biophys. Acta 1241, 407–423.

    CAS  Google Scholar 

  • Pfeuffer, M., Schrezenmeir, J. 2001. Sphingolipids: metabolism and implications for health, Bulletin International Dairy Federation, Brussels, 363, pp. 47–51.

    Google Scholar 

  • Pouliot, M., Pouliot, Y., Britten, M., Maubois, J.L., Fauquant, J. 1994. Study of the dissociation of β-casein from native phosphocaseinate. Lait. 74, 325–332.

    Article  CAS  Google Scholar 

  • Quaranta, S., Giuffrida, M.G., Cavaletto, M., Giunta, C., Godovac-Zimmermann, J., Canas, B., Fabris, C., Bertino, E., Mombro, M., Conti, A. 2001. Human proteome enhancement: high-recovery method and improved two-dimensional map of colostral fat globule membrane proteins. Electrophoresis. 22, 1810–1818.

    Article  CAS  Google Scholar 

  • Rueda, R., Maldonado, J., Narbona, E., Gil, A. 1998. Neonatal dietary gangliosides. Early Hum. Dev. 53, S135–S147.

    Article  CAS  Google Scholar 

  • Ruegg, M., Blanc, B. 1981. The fat globule size distribution in human milk. Biochim. Biophys. Acta 666, 7–14.

    CAS  Google Scholar 

  • Sachdeva, S., Buchheim, W. 1997. Recovery of phospholipids from buttermilk using membrane processing. Kieler Milchwirtschaftliche Forschungsberichte. 49, 47–68.

    CAS  Google Scholar 

  • Saito, H., Ishihara, K.J. 1997. Antioxidant activity and active sites of phospholipids as antioxidants. J. Am. Oil Chem. Soc. 74, 1531–1536.

    CAS  Google Scholar 

  • Sakamoto, W., Nishikaze, O., Sakakibara, E. 1974. Comparison of two inhibitors of betaglucuronidase from porcine sublingual and submaxillary glands. Biochim. Biophys. Acta 343, 409–415.

    CAS  Google Scholar 

  • Schmelz, E.M., Dillehay, D.L., Webb, S.K., Reiter, A., Adams, J., Merrill, A.H., Jr. 1996. Sphingomyelin consumption suppresses aberrant colonic crypt foci and increases the proportion of adenomas versus adenocarcinomas in CF1 mice treated with 1,2-dimethylhydrazine: implications for dietary sphingolipids and colon carcinogenesis. Cancer Res. 56, 4936–4941.

    CAS  Google Scholar 

  • Schmelz, E.M., Bushnev, A.S., Dillehay, D.L., Liotta, D.C., Merrill, A.H. Jr. 1997. Suppression of aberrant colonic crypt foci by synthetic sphingomyelins with saturated or unsaturated sphingoid base backbones. Nutr. Cancer. 28, 81–85.

    Article  CAS  Google Scholar 

  • Schmelz, E.M., Sullards, M.C., Dillehay, D.L., Merrill, A.H., Jr. 2000. Colonic cell proliferation and aberrant crypt foci formation are inhibited by dairy glycosphingolipids in 1,2-dimethylhydrazine-treated CF1 mice. J. Nutr. 130, 522–527.

    CAS  Google Scholar 

  • Schroten, H, Hanisch, F.G., Plogmann, R., Hacker, J., Uhlenbruck, G., Nobis-Bosch, R. Wahn, V. 1992. Inhibition of adhesion of S-fimbriated Escherichia coli to buccal epithelial cells by human milk fat globule membrane components: a novel aspect of the protective function of mucins in the nonimmunoglobulin fraction. Infect. Immunol. 60, 2893–2899.

    CAS  Google Scholar 

  • Sharma, S.K., Dalgleish, D.G. 1993. Interactions between milk serum proteins and synthetic fat globule membrane during heating of homogenized whole milk. J. Agric. Food Chem. 41, 1407–1412.

    Article  CAS  Google Scholar 

  • Sharma, S.K., Dalgleish, D.G. 1994. Effect of heat treatments on the incorporation of milk serum proteins into the fat globule membrane of homogenized milk. J. Dairy Res. 61, 375–384.

    Article  CAS  Google Scholar 

  • Simon, G.L., Gorbach, S.L. 1984. Intestinal flora in health and disease. Gastroenterology. 86, 174–193.

    CAS  Google Scholar 

  • Singh, H., Tokley, R.P. 1990. Effects of preheat treatments and buttermilk addition on the seasonal variations in the heat stability of recombined evaporated milk and reconstituted concentrated milk. Aust. J. Dairy Technol. 4, 10–16.

    Google Scholar 

  • Slimane, T.A., Hoekstra, D. 2002. Sphingolipid trafficking and protein sorting in epithelial cells. FEBS Lett. 529, 54.

    Article  Google Scholar 

  • Smith, W.L, Merrill, A.H., Jr. 2002. Sphingolipid metabolism and signaling minireview series. J. Biol. Chem. 277, 25841–25842.

    Article  CAS  Google Scholar 

  • Spiegel, S., Milstien, S. 2002. Sphingosine 1-phosphate, a key cell signaling molecule. J Biol Chem. 277, 25851–25854.

    Article  CAS  Google Scholar 

  • Sprong, R.C., Hulstein, M.F.E., van der Meer, R. 1999. Phospholipid-rich butter milk increases the resistance to Listeria monocytogenes in rats. Immunol. Lett. 69, 25–192 (abstr. 12.33).

    Article  Google Scholar 

  • Stefferl, A., Schubart, A., Storch, M., Amini, A., Mather, I., Lassmann, H., Linington, C. 2000. Butyrophilin, a milk protein, modulates the encephalitogenic T cell response to myelin oligodendrocyte glycoprotein in experimental autoimmune encephalomyelitis. J Immunol. 165, 2859–2865.

    CAS  Google Scholar 

  • Takada, Y., Matsubara, N., Yagihira, S., Kawakami, H., Aoe, S. 2001a. Drugs for periodontal diseases containing sphingolipids and food and feed containing them. Japanese Patent JP 2001158736 A 2 20010612.

    Google Scholar 

  • Takada, Y., Matsubara, N., Yagihira, S., Kawakami, H., Aoe, S. 2001b. Drugs for osteoarticular diseases containing sphingolipids and food and feed containing them. Japanese Patent JP 2001158735 A 2 20010612.

    Google Scholar 

  • Taylor, M.J., Richardson, T. 1980. Antioxidant activity of skim milk: effect of heat and resultant sulfhydryl groups. J. Dairy Res. 63, 1783–1795.

    CAS  Google Scholar 

  • Turcot, S., Turgeon, S.L., St-Gelais, D. 2001. Effet de la concentration en phospholipids de babeurre dans le lait de fromagerie sur la production et al composition de fromages allégés de type Cheddar. Lait. 81, 429–442.

    Article  CAS  Google Scholar 

  • van Boekel, M.A.J.S., Walstra, P. 1989. Physical changes in the fat globules in unhomogenized and homogenized milk. Bulletin 269, International Dairy Federation, Brussels, pp. 13–16.

    Google Scholar 

  • van Boekel, M.A.J.S., Walstra, P. 1995. Effect of heat treatment on chemical and physical changes to milk fat globules. In: Heat-Induced Changes in Milk (P.F. Fox, ed.), pp. 51–65, special issue 9501 International Dairy Federation, Brussels.

    Google Scholar 

  • van Hooijdonk, A.C.M., Kussendrager, K.D., Steijns, J.M. 2000. In vivo antimicrobial and antiviral activity of components in bovine milk and colostrums involved in non-specific defence. Br. J. Nutr. 84, S127–S134.

    Google Scholar 

  • van Meer, G., Lisman, Q. 2002. Sphingolipid transport: Rafts and translocators. J. Biol. Chem. 277, 25855–25858.

    Article  CAS  Google Scholar 

  • Vesper, H., Schmelz, E.-M., Nikolova-Karakashian, M.N., Dillehay, D.L., Lynch, D.V., Merrill, A.H., Jr. 1999. Sphingolipids in food and the emerging importance of sphingolipids to nutrition. J. Nutr. 129, 1239–1250.

    CAS  Google Scholar 

  • Vojdani, A., Campbell, A.W., Anyanwu, E., Kashanian, A., Bock, K., Vojdani, E. 2002. Antibodies to neuron-specific antigens in children with autism: possible cross-reaction with encephalitogenic proteins from milk, Chlamydia pneumoniae and Streptococcus group A. J Neuroimmunol. 129, 168–177.

    Article  CAS  Google Scholar 

  • Vorbach, C., Scriven, A., Capecchi, M.R. 2002. The housekeeping gene Xanthine oxidoreductase is necessary for milk fat droplet enveloping and secretion: gene sharing in the lactating mammary gland. Genes Dev. 16, 3223–3235.

    Article  CAS  Google Scholar 

  • Vorbach, C., Harrison. R., Capecchi, M.R. 2003. Xanthine oxidorudectase is central to the evolution and function of the innate immune system. Trends Immunol. 24, 512–517.

    Article  CAS  Google Scholar 

  • Walstra, P. 1983. Physical chemistry of milk fat globules. In: Developments in Dairy Chemistry (P.F. Fox, ed.), pp. 119–157, Applied Science Publishers, London.

    Google Scholar 

  • Walstra, P., Oortwijin, H. 1982. The membranes of recombined fat globules. 3. Mode of formation. Neth. Milk Dairy J. 36, 103–113.

    Google Scholar 

  • Wong, P.Y.Y., Kitts, D.D. 2003. Chemistry of buttermilk solid antioxidant activity. J. Dairy Sci. 86, 1541–1547.

    Article  CAS  Google Scholar 

  • Wu, C.C., Howell, K.E., Neville, M.C., Yates, J.R. III, McManaman, J.L. 2000. Proteomics reveal a link between the endoplasmic reticulum and lipid secretory mechanisms in mammary epithelial cells. Electrophoresis. 21, 3470–3482.

    Article  CAS  Google Scholar 

  • Ye, A., Singh, H., Oldfield, D.J., Anema, S. 2004. Kinetics of heat-induced association of β-lactoglobulin and α-lactalbumin with milk fat globule membrane in whole milk. Int. Dairy J. 14, 389–398.

    Article  CAS  Google Scholar 

  • Ye, A., Singh, H., Taylor, M.W., Anema, S. 2002. Characterization of protein components of natural and heat-treated milk fat globule membranes. Int. Dairy J. 12, 393–402.

    Article  CAS  Google Scholar 

  • Yolken, R.H., Peterson, J.A., Vonderfecht, S.L., Fouts, E.T., Midthun. K., Newburg, D.S. 1992. Human milk mucin inhibits rotavirus replication and prevents experimental gastroenteritis. J. Clin. Invest. 90, 1984–1991.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Ward, R.E., German, J.B., Corredig, M. (2006). Composition, Applications, Fractionation, Technological and Nutritional Significance of Milk Fat Globule Membrane Material. In: Fox, P.F., McSweeney, P.L.H. (eds) Advanced Dairy Chemistry Volume 2 Lipids. Springer, Boston, MA. https://doi.org/10.1007/0-387-28813-9_6

Download citation

Publish with us

Policies and ethics