Skip to main content

The Neurophysiology of Pitch

  • Chapter
Pitch

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 24))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams JC (1979) Ascending projections to the inferior colliculus. J Comp Neurol 183: 519–538.

    Article  CAS  PubMed  Google Scholar 

  • Adams JC (1997) Projections from octopus cells of the posteroventral cochlear nucleus to the ventral nucleus of the lateral lemniscus in cat and human. Aud Neurosci 3: 335–350.

    Google Scholar 

  • Arnott R, Wallace M, Palmer AR (2004) Onset neurons in the anteroventral cochlear nucleus project to the dorsal cochlear nucleus. J Assoc Res. Otolaryngol 5:153–170.

    PubMed  Google Scholar 

  • Assmann P, Summerfield AQ (1990) Modelling the perception of concurrent vowels: vowels with different fundamental frequencies. J Acoust Soc Am 88:680–697.

    Article  CAS  PubMed  Google Scholar 

  • Biebel UW, Langner G (2002) Evidence for interactions across frequency channels in the inferior colliculus of awake chinchilla. Hear Res 169:151–168.

    Article  PubMed  Google Scholar 

  • Bilsen FA, Ritsma RJ (1969/70) Repetition pitch and its implication for hearing theory. Acustica 22:63–73.

    Google Scholar 

  • Blackburn CC, Sachs MB (1989) Classification of unit types in the anteroventral cochlear nucleus: PST histograms and regularity analysis. J Neurophysiol 62:1303–1329.

    CAS  PubMed  Google Scholar 

  • Blackburn CC, Sachs MB (1990) The representation of the steady-state vowel sound /e/ in the discharge patterns of cat anteroventral cochlear nucleus neurons. J Neurophysiol 63:1191–1211.

    CAS  PubMed  Google Scholar 

  • Brugge JF, Merzenich MM (1973) Patterns of activity of single neurons of the auditory cortex of monkey. In: Moller AR (ed), Basic Mechanisms in Hearing. New York: Academic Press, pp. 745–772.

    Google Scholar 

  • Cariani PA, Delgutte B (1996a) Neural correlates of the pitch of complex tones. I. Pitch and pitch salience. J Neurophysiol 76:1698–1716.

    CAS  PubMed  Google Scholar 

  • Cariani PA, Delgutte B (1996b) Neural correlates of the pitch of complex tones. II. Pitch shift, pitch ambiguity, phase-invariance, pitch circularity, rate pitch, and the dominance region of pitch. J Neurophysiol 76:1717–1734.

    CAS  PubMed  Google Scholar 

  • Carlyon RP, Shackleton TM (1994) Comparing the fundamental frequencies of resolved and unresolved harmonics: evidence for two pitch mechanisms? J Acoust Soc Am 95:3541–3554.

    Google Scholar 

  • Carlyon RP, van Wieringen A, Long CJ, Deeks JM, Wouters J (2002) Temporal pitch mechanisms in acoustic and electric hearing. J Acoust Soc Am 112:621–633.

    PubMed  Google Scholar 

  • Carney L (1994) Spatiotemporal encoding of sound level: models for normal encoding and recruitment of loudness. Hear Res 76:31–44.

    Article  CAS  PubMed  Google Scholar 

  • Carney LH, Heinz MG, Evilsizer ME, Gilkey RH, Colburn HS (2002) Auditory phase opponency: a temporal model for masked detection at low frequencies. Acta Acustica 88:334–346.

    Google Scholar 

  • Caspary DM, Backoff PM, Finlayson PG, Palombi PS (1994) Inhibitory inputs modulate discharge rate within frequency receptive fields of anteroventral cochlear nucleus neurons. J Neurophysiol 72:2124–2133.

    CAS  PubMed  Google Scholar 

  • Cedolin L, Delgutte B (2005) Representations of the pitch of complex tones in the auditory nerve In: Pressnitzer D, de Cheveigné, A, McAdams S, Collet L. (eds), Auditory Signal Processing: Physiology, Psychoacoustics and Models (in press).

    Google Scholar 

  • Cohen MA, Grossberg S, Wise LL (1995) A spectral network model of pitch perception. J Acoust Soc Am 98:862–879.

    CAS  PubMed  Google Scholar 

  • de Cheveigné A (1993) Separation of concurrent harmonic sounds: fundamental frequency estimation and a time-domain cancellation model of auditory processing. J Acoust Soc Am 93:3271–3290.

    Google Scholar 

  • Delgutte B (1982) Some correlates of phonetic distinctions at the level of the auditory nerve. In: Granstrom R (ed), The Representation of Speech in the Peripheral Auditory System. Amsterdam: Elsevier, pp. 131–150.

    Google Scholar 

  • Delgutte B (1987) Peripheral auditory processing of speech information: implications from a physiological study of intensity discrimination. In: Schouten MEH (ed), The Psychophysics of Speech Perception. Dordrecht: Nijhoff, pp. 333–353.

    Google Scholar 

  • Delgutte B (1996) Physiological models for basic auditory percepts. In: Hawkins H, McMullin T, Popper AN, Fay RR (eds), Auditory Computation, New York: Springer-Verlag, pp. 157–220.

    Google Scholar 

  • Delgutte B, Kiang NYS (1984) Speech coding in the auditory nerve. I. Vowel-like sounds. J Acoust Soc Am 75:879–886.

    CAS  PubMed  Google Scholar 

  • Doucet JR, Ryugo DK (1997) Projections from the ventral cochlear nucleus to the dorsal cochlear nucleus in rats. J Comp Neurol 385:245–264.

    Article  CAS  PubMed  Google Scholar 

  • Doucet, JR, Ross AT, Gillespie MB, Ryugo DK (1999) Glycine immunoreactivity of multipolar neurons in the ventral cochlear nucleus which project to the dorsal cochlear nucleus. J Comp Neurol 408:515–531.

    Article  CAS  PubMed  Google Scholar 

  • Edeline J-M (1998) Learning-induced physiological plasticity in the thalamo-cortical sensory systems: a critical evaluation of receptive field plasticity, map changes and their potential mechanisms. Prog Neurobiol 57:165–224.

    Article  Google Scholar 

  • Eggermont JJ (2001) Between sound and perception: reviewing the search for a neural code. Hear Res 157:1–42.

    Article  CAS  PubMed  Google Scholar 

  • Ehret G, Merzenich MM (1988) Neuronal discharge rate is unsuitable for encoding sound intensity at the inferior colliculus level. Hear Res 35:1–18.

    Article  CAS  PubMed  Google Scholar 

  • Erisir A, Van Horn SC, Sherman SM (1997) Relative numbers of cortical and brainstem inputs to the lateral geniculate nucleus. Proc Natl Acad Sci USA 94:1517–1520.

    CAS  PubMed  Google Scholar 

  • Evans EF (1978) Place and time coding of frequency in the peripheral auditory system: some physiological pros and cons. Audiology 17:369–420.

    CAS  PubMed  Google Scholar 

  • Evans EF (1981) The dynamic range problem: Place and time coding at the level of the cochlear nerve and cochlear nucleus. In: Syka J (ed), Neuronal Mechanisms of Hearing. New York: Plenum Press, pp. 69–85.

    Google Scholar 

  • Evans EF (2001) Latest comparisons between physiological and behavioral frequency selectivity. In: Breebaart, D, Houtsma A, Kohlrausch A, Prijs V, Schoonhoven R (eds), Proceedings of the 12th International Symposium on Hearing, Physiological and Psychophysical Bases of Auditory Function. Maastrict: Shaker BV, pp. 382–387.

    Google Scholar 

  • Evans EF, Palmer AR (1980) Relationship between the dynamic ranges of cochlear nerve fibers and their spontaneous activity Exp Brain Res 40:115–118.

    Article  CAS  PubMed  Google Scholar 

  • Evans EF, Zhao W (1998) Periodicity coding of the fundamental frequency of harmonic complexes: physiological and pharmacological study of onset units in the ventral cochlear nucleus. In: Palmer AR, Rees A, Summerfield AQ, Meddis R (eds), Psychophysical and Physiological Advances in Hearing. London: Whurr, pp. 186–194.

    Google Scholar 

  • Fishman YI, Reser DH, Arezzo JC, Steinschneider M (1998) Pitch vs. spectral encoding of harmonic complex tones in primary auditory cortex of the awake monkey. Brain Res 786:18–30.

    Article  CAS  PubMed  Google Scholar 

  • Frisina RD, Smith RL, Chamberlain SC (1990). Encoding of amplitude modulation in the gerbil cochlear nucleus: I. A hierarchy of enhancement. Hear Res 44:99–122.

    CAS  PubMed  Google Scholar 

  • Frisina RD, Walton JP, Karcich KJ (1994) Dorsal cochlear nucleus single neurons can enhance temporal processing capabilities in background noise. Exp Brain Res 102:160–164.

    Article  CAS  PubMed  Google Scholar 

  • Frisina RD, Karich KJ, Tracy TC, Sullivan DM, Walton JP, Colombo J (1996) Preservation of amplitude modulation coding in the presence of background noise by chinchilla auditory-nerve fibers. J Acoust Soc Am 99:475–490.

    Article  CAS  PubMed  Google Scholar 

  • Fritz J, Shamma S, Elhilali M, Klein D (2003) Rapi-task-related plasticity of specgtrotemporal receptive fields in primary auditory cortex. Nat Neurosci 6:1216–1223.

    Article  CAS  PubMed  Google Scholar 

  • Geisler CD, Silkes SM (1991) Responses of “lower-spontaneous rate” auditory nerve fibers to speech syllables presented in noise. II. Glottal-pulse periodicities. J Acoust Soc Am 90:3140–3148.

    Article  CAS  PubMed  Google Scholar 

  • Godfrey, DA Kiang NYS, Norris BE (1975) Single unit activity in the posteroventral cochlear nucleus of the cat. J Comp Neurol 162:247–268.

    CAS  PubMed  Google Scholar 

  • Goldberg J, Brown PB (1969) Response of binaural neurons of dog superior olivary complex to dichotic tonal stimuli: some physiological mechanisms of sound localisation. J Neurophysiol 32:613–636.

    CAS  PubMed  Google Scholar 

  • Griffiths TD, Buchel C, Frackowiak RSJ, Patterson RD (1998) Analysis of temporal structure in sound by the human brain. Nat Neurosci 1:422–427.

    CAS  PubMed  Google Scholar 

  • Heil P, Rajan R, Irvine DRF (1994) Topographic representation of tone intensity along the iso-frequency axis of cat primary auditory cortex. Hear Res 76:188–202.

    Article  CAS  PubMed  Google Scholar 

  • Heinz MG, Colburn HS, Carney LH (2001) Evaluating auditory performance limits: I. One parameter discrimination using a computational model for the auditory nerve. Neural Comput 13:2273–2316.

    CAS  PubMed  Google Scholar 

  • Hewitt MJ, Meddis R (1994) A computer model of amplitude modulation sensitivity of single units in the inferior colliculus. J Acoust Soc Am 95:2145–2159.

    Article  CAS  PubMed  Google Scholar 

  • Horst JW, Javel E, Farley GR (1985) Extraction and enhancement of spectral structure by the cochlea. J Acoust Soc Am 78:1898–1901.

    Article  CAS  PubMed  Google Scholar 

  • Horst JW, Javel E, Farley GR (1986) Coding of spectral fine structure in the auditory nerev. I. Fourier analysis of period and interspike interval histograms. J Acoust Soc Am 79:398–416.

    Article  CAS  PubMed  Google Scholar 

  • Horst, JW, Javel E, Farley GR (1990) Coding of spectral fine structure in the auditory nerev. II. Level dependent nonlinear responses. J Acoust Soc Am 88:2656–2681.

    Article  CAS  PubMed  Google Scholar 

  • Hose B, Langner G, Scheich H (1987) Topographic representation of periodicities in the forebrain of the Mynah bird: one map for pitch and rhythm? Brain Res 422:367–373.

    Article  CAS  PubMed  Google Scholar 

  • Irvine DRF, Gago (1990) Binaural interaction in high-frequency neurons in inferior colliculus of the cat: effects of variations in sound pressure level on sensitivity to interaural intensity differences. J Neurophysiol 63:570–591.

    CAS  PubMed  Google Scholar 

  • Javel E (1980) Coding of AM tones in the Chinchilla auditory nerve: implications for the pitch of complex tones. J Acoust Soc Am 68:133–146.

    Article  CAS  PubMed  Google Scholar 

  • Johnson D (1980) The relationship between spike rate and synchrony in responses of auditory nerve fibers to single tones. J Acoust Soc Am 68:1115–1122.

    CAS  PubMed  Google Scholar 

  • Joris P, Smith PH (1998) Temporal and binaural properties in dorsal cochlear nucleus and its output tract. J Neurosci 18:10157–10170.

    CAS  PubMed  Google Scholar 

  • Joris PX, Carney LH, Smith PH, Yin TC (1994) Enhancement of neural synchronization in the anteroventral cochlear nucleus. I. Responses to tones at the characteristic frequency. J Neurophysiol 71:1022–1036.

    CAS  PubMed  Google Scholar 

  • Joris P, Schreiner CE, Rees A (2004) Neural processing of amplitude-modulated sounds. Physiol Rev 84:541–577.

    Article  CAS  PubMed  Google Scholar 

  • Kadia SC, Wang X (2003) Spectral integration in A1 of awake primates: neurons with single-and multipeaked tuning characteristics. J Neurophysiol 89:1603–1622.

    PubMed  Google Scholar 

  • Kaernbach C, Demany L (1998) Psychophysical evidence against the autocorrelation theory of pitch perception. J Acoust Soc Am 104:2298–2306.

    Article  CAS  PubMed  Google Scholar 

  • Keilson SE, Richards VM, Wyman BT Young ED (1997) The representation of concurrent vowels in the cat anaesthetized ventral cochlear nucleus: evidence for a periodicitytagged spectral representation. J Acoust Soc Am 102:1056–1071.

    Article  CAS  PubMed  Google Scholar 

  • Kilgard MO, Merzenich, MM (1998) Cortical map reorganization enabled by nucleus basalis activity. Science 279:1714–1718.

    Article  CAS  PubMed  Google Scholar 

  • Kim DO, Leonard, G (1988) Pitch-period following response of cat cochlear nucleus neurons to speech sounds. In: Duifhuis H, Horst JW, Wit HP (eds), Basic Issues in Hearing, London: Academic Press, pp. 252–260.

    Google Scholar 

  • Kim DO, Molnar CE (1979) A population study of cochlear nerve fibers: comparison of spatial distributions of average-rate and phase locking measures of responses to single tones. J Neurophysiol 42:16–30.

    CAS  PubMed  Google Scholar 

  • Kim DO, Parham K (1990) Auditory nerve spatial encoding of high frequency pure tones: population response profiles derived from d′ measure associated with nearby places along the cochlea. Hear Res 52:167–180.

    Google Scholar 

  • Kim DO, Rhode WS, Greenberg, SR (1986) Responses of cochlear nucleus neurons to speech signals: neural encoding of pitch, intensity and other parameters. In: Moore BCJ, Patterson RD (eds), Auditory Frequency Selectivity: A NATO Advanced Research Workshop. New York: Plenum Press, pp. 281–288.

    Google Scholar 

  • Kim DO, Chang SO, Sirianni JG (1990a) A population study of auditory nerve fibers in unanaesthetized decerebrate cats: responses to pure tones. J Acoust Soc Am 87:1648–1655.

    Article  CAS  PubMed  Google Scholar 

  • Kim DO, Sirianni, JG, Chang SO (1990b) Responses of DCN-PVCN neurons and auditory-nerve fibers in unanaesthetized decerebrate cats to AM and pure tones: analysis with autocorrelation/power spectrum. Hear Res 45:95–113.

    Article  CAS  PubMed  Google Scholar 

  • Kim DO, Parham K, Sirianni JG, Chang, SO (1991) Spatial response profiles of posteroventral cochlear nucleus neurons and auditory nerve fibers in unanaesthetized decerebrate cats: responses to pure tones. J Acoust Soc Am 89:2804–2817.

    CAS  PubMed  Google Scholar 

  • Kopp-Scheinpflug C, Dehmel S, Dorrscheidt GJ, Rubsamen R (2002) Interaction of excitation and inhibition in anteroventral cochlear nucleus neurons that receive large endbulb synaptic endings. J Neurosci 22:11004–11018.

    CAS  PubMed  Google Scholar 

  • Koppl C (1997) Phase locking to high frequencies in the auditory nerve and cochlear nucleus magnocellularis of the Barn Owl, Tyto. Alba J Neurosci 17:3312–3321.

    CAS  Google Scholar 

  • Krishna BS, Semple MN (2000) Auditory temporal processing: responses to sinusoidally amplitude modulated tones in the inferior colliculus. J Neurophysiol 84:255–273.

    CAS  PubMed  Google Scholar 

  • Krumbholz K, Patterson RD, Pressnitzer D (2000) The lower limit of pitch as determined by rate discrimination. J Acoust Soc Am 108:1170–1180.

    Article  CAS  PubMed  Google Scholar 

  • Lai Y-C, Winslow RL, Sachs MB (1994) The functional role of excitatory and inhibitory interactions in chopper cells of the anteroventral cochlear nucleus. Neural Comput 6:1127–1140.

    Google Scholar 

  • Langner G (1981) Neuronal mechanisms for pitch analysis in the time domain. Exp Brain Res 44:450–454.

    Article  CAS  PubMed  Google Scholar 

  • Langner G (1988) Physiological properties of units in the cochlear nucleus are adequate for a model of periodicity analysis in the auditory midbrain. In: Syka J, Masterton RB (eds), Auditory Pathway. New York: Plenum Press, pp. 207–212.

    Google Scholar 

  • Langner G, Schreiner CE (1988) Periodicity coding in the inferior colliculus of the cat. I. Neuronal mechanisms. J Neurophysiol 60:1799–1822.

    CAS  PubMed  Google Scholar 

  • Langner G, Albert M, Briede T (2002) Temporal and spatial coding of periodicity information in the inferior colliculus of the awake chinchilla (Chinchilla laniger). Hear Res 168:110–130.

    Article  PubMed  Google Scholar 

  • Liberman MC (1978) Auditory-nerve response from cats raised in a low noise chamber. J Acoust Soc Am 63:442–455.

    CAS  PubMed  Google Scholar 

  • Liberman MC (1982) Single-neuron labeling in the cat auditory nerve. Science 216:1239–1241.

    CAS  PubMed  Google Scholar 

  • Liberman MC (1988) Physiology of cochlear efferent and afferent neurons: direct comparisons in the same animal. Hear Res 34:179–192.

    Article  CAS  PubMed  Google Scholar 

  • Liberman MC (1991) Central projections of auditory nerve fibers of differing spontaneous rate. I. Anteroventral cochlear nucleus. J Comp Neurol 313:240–258.

    Article  CAS  PubMed  Google Scholar 

  • Liberman MC (1993) Central projections of auditory nerve fibers of differing spontaneous rate, II: posteroventral and dorsal cochlear nuclei. J Comp Neurol 327:17–36.

    Article  CAS  PubMed  Google Scholar 

  • Liberman MC, Oliver ME (1984) Morphometry of intracellularly laveled neurons of the auditory nerve: correlations with functional properties. J Comp Neurol 223:163–176.

    Article  CAS  PubMed  Google Scholar 

  • Lu T, Liang, L, Wang X (2001) Temporal and rate representations of time-varying signals in the auditory cortex of awake primates. Nat Neurosci 4:1131–1138.

    CAS  PubMed  Google Scholar 

  • May BJ, Sachs MB (1992) Dynamic range of neural rate rtesponses in the ventral cochlear nucleus of awake cats. J Neurophysiol 68:1589–1602.

    CAS  PubMed  Google Scholar 

  • May BJ, Huang A, Le Prell G, Heinz RD (1996) Vowel formant frequency discrimination in cats: comparison of auditory nerve representations and psychophysical thresholds. Audit Neurosci 3:135–162.

    Google Scholar 

  • May BJ, Le Prell GS, Sachs MB (1998) Vowel representations in the ventral cochlear nucleus of the cat: effects of level, background noise and behavioral state. J Neurophysiol 79:1755–1767.

    CAS  PubMed  Google Scholar 

  • McAlpine DM (2004) Neural sensitivity to periodicity in the inferior colliculus: Evidence for the role of cochlear distortions. J Neurophysiol 92:1295–1311.

    PubMed  Google Scholar 

  • McAlpine DM, Grothe B (2003) Sound localisation and delay lines—do mammals fit the model? Trends Neurosci 26:347–350.

    Article  CAS  PubMed  Google Scholar 

  • Meddis R, Hewitt MJ (1991a) Virtual pitch and phase sensitivity studied using a computer model of the auditory periphery. I: Pitch identification. J Acoust Soc Am 89:2866–2882.

    Google Scholar 

  • Meddis R, Hewitt MJ (1991b) Virtual pitch and phase sensitivity studied using a computer model of the auditory periphery. II: Phase sensitivity J Acoust Soc Am 89:2883–2894.

    Google Scholar 

  • Merzenich, MM, Knight PL, Roth, GL (1975) Representation of the cochlea within primary auditory cortex in the cat. J Neurophysiol 38:231–249.

    CAS  PubMed  Google Scholar 

  • Miller MI, Sachs MB (1984) Representation of voice pitch in discharge patterns of auditory-nerve fibers. Hear Res 14:257–279.

    Article  CAS  PubMed  Google Scholar 

  • Nelken I, Young ED (1994) Two separate inhibitory mechanisms shape the responses of dorsal cochlear nucleus type IV units to narrowband and wideband stimuli. J Neurophysiol 71:2446–2462.

    CAS  PubMed  Google Scholar 

  • Nelken I, Fishbach A, Las L, Ulanovsky N, Farkas D (2003) Primary auditory cortex of cats: feature detection or something else? Biol Cybernetics 89:397–406.

    Article  Google Scholar 

  • Oertel D, Wu SH, Garb MW, Dizack C (1990) Morphology and physiology of cells in slice preparations of the posteroventral cochlear nucleus of mice. J Comp Neurol 295:136–154.

    Article  CAS  PubMed  Google Scholar 

  • Oertel D, Bal R, Gardner SM, Smith PH, Joris PX (2000) Detection of synchrony in the activity of auditory nerve fibers by octopus cells of the mammalian cochlear nucleus. Proc Natl Acad Sci USA 97:11773–11779.

    Article  CAS  PubMed  Google Scholar 

  • Oliver DL, Morest DK (1984) The central nucleus of the inferior colliculus in the cat. J Comp Neurol 222:237–264.

    Article  CAS  PubMed  Google Scholar 

  • Oxenham AJ, Shera CA (2003) Estimates of human cochlear tuning at low levels using forward and simultaneous masking. J Assoc Res Otolarngol 4:541–554.

    Google Scholar 

  • Palmer AR (1990) The representation of the spectra and fundamental frequencies of steady-state single-and double-vowel sounds in the temporal discharge patterns of guinea pig cochlear nerve fibers. J Acoust Soc Am 88:1412–1426.

    Article  CAS  PubMed  Google Scholar 

  • Palmer AR, Russell IJ (1986) Phase locking in the cochlear nerve of the guinea pig and its relation to the receptor potential of inner hair cells. Hear Res 24:1–15.

    Article  CAS  PubMed  Google Scholar 

  • Palmer AR, Winter IM (1992) Cochlear nerve and cochlear nucleus response to the fundamental frequency of voiced speech sounds and harmonic complex tones. In: Cazals Y, Demany L, Horner K (eds), Auditory Physiology and Perception. Oxford: Pergamon, pp. 231–239.

    Google Scholar 

  • Palmer AR, Winter IM (1993) Coding of the fundamental frequency of voiced speech sounds and harmonic complex tones in the ventral cochlear nucleus. In: Merchan MA, Juiz J, Godfrey DA, Mugnaini E (eds), Mammalian Cochlear Nuclei: Organization and Function. New York: Plenum Press, pp. 373–384.

    Google Scholar 

  • Palmer AR, Winter IM (1996) The temporal window of two-tone facilitation in onset units of the ventral cochlear nucleus. Audiol Neurootol 1:12–30.

    CAS  PubMed  Google Scholar 

  • Palmer AR, Winter IM, Darwin CJ (1986) The representation of steady-state vowels in the temporal discharge patterns of the guinea pig cochlear nerve and primarylike cochlear nucleus neurons. J Acoust Soc Am 79:100–113.

    Article  CAS  PubMed  Google Scholar 

  • Palmer AR, Jiang D, Marshall D (1996) Responses of ventral cochlear nucleus onset and chopper units as a function of signal bandwidth. J Neurophysiol 75:780–794.

    CAS  PubMed  Google Scholar 

  • Pantev C, Hoke M, Lutkenhoner B, Lehnertz K (1989) Tonotopic organization of the auditory cortex: pitch versus frequency representation Science 246:486–488.

    CAS  PubMed  Google Scholar 

  • Patterson RD (1994) The sound of a sinusoid: spectral models. J Acoust Soc Am 96:1409–1418.

    Google Scholar 

  • Patterson RD, Allerhand MH, Giguerre C. (1995) Time-domain modeling of peripheral auditory processing: a modular architecture and a software platform. J Acoust Soc Am 98:1890–1894.

    Article  CAS  PubMed  Google Scholar 

  • Patterson RD, Uppenkamp S, Johnsrude I, Griffiths TD (2002) The processing of temporal pitch and melody information in auditory cortex. Neuron 36:767–776.

    Article  CAS  PubMed  Google Scholar 

  • Pfeiffer RR Kim DO (1975) Cochlear nerve fiber responses distribution along the cochlear partition. J Acoust Soc Am 58:867–869.

    Article  CAS  PubMed  Google Scholar 

  • Phillips DP, Orman SS (1984) responses of single neurons in posterior field of cat auditory cortex to tonal stimulation. J Neurophysiol 51:147–163.

    CAS  PubMed  Google Scholar 

  • Phillips DP, Orman SS, Musicant AD, Wilson GF (1985) Neurons in the cat’s primary auditory cortex distinguished by their responses to tones and wide spectrum noise. Hear Res 18:73–86.

    CAS  PubMed  Google Scholar 

  • Phillips DP, Semple MN, Calford MB, Kitzes LM (1994) Level-dependent representation of stimulus frequency in cat primary auditory cortex. Exp Brain Res 102:210–226.

    Article  CAS  PubMed  Google Scholar 

  • Pressnitzer D, Patterson RD (2001) Distortion products and the pitch of harmonic complex tones. In: Breebaart D, Houtsma A, Kohlrausch A, Prijs V, Schoonhoven R (eds), Proceedings of the 12th International Symposium on Hearing, Physiological and Psychophysical Bases of Auditory Function. Maastrict: Shaker BV, pp. 97–104.

    Google Scholar 

  • Pressnitzer D, de Cheveigné A, Winter IM (2001) Perceptual pitch shift for sounds with similar waveform autocorrelation. Acoust Res Lett Online 3:1–6.

    Google Scholar 

  • Pressnitzer D, de Cheveigné A, Winter IM (2004) Physiological correlates of the perceptual pitch shift for sounds with similar waveform autocorrelation. Acoust Res Lett Online 5:1–6.

    Google Scholar 

  • Rees A, Palmer AR (1988) Rate-intensity functions and their modification by broadband noise. J Acoust Soc Am 83:1488–1498.

    Article  CAS  PubMed  Google Scholar 

  • Rhode WS (1994) Temporal encoding of 200% amplitude modulated signals in the ventral cochlear nucleus of the cat. Hear Res 77:43–68.

    Article  CAS  PubMed  Google Scholar 

  • Rhode WS (1995) Interspike intervals as a correlate of periodicity in cat cochlear nucleus. J Acoust Soc Am 97:2414–2429.

    Article  CAS  PubMed  Google Scholar 

  • Rhode WS, Smith PH (1986) Encoding timing and intensity in the ventral cochlear nucleus of the cat. J Neurophysiol 56:261–286.

    CAS  PubMed  Google Scholar 

  • Robertson D, Irvine DRF (1989) Plasticity of frequency organization in auditory cortex of guinea pigs with partial unilateral deafness. J Comp Neurol 282:456–471.

    Article  CAS  PubMed  Google Scholar 

  • Robles L, Ruggero MA (2001) Mechanics of the mammalian cochlea. Physio Rev 81:1305–1352.

    CAS  Google Scholar 

  • Rockel AJ, Jones EG (1973a) The neuronal organization of the inferior colliculus of the adult cat. I. The central nucleus. J Comp Neurol 147:11–60.

    CAS  PubMed  Google Scholar 

  • Rockel AJ, Jones EG (1973b) Observations on the fine structure of the central nucleus of the inferior colliculus of the cat. J Comp Neurol 147:61–92.

    CAS  PubMed  Google Scholar 

  • Rose JE, Galambos R, Hughes JR (1959) Microelectrode studies of the cochlear nuclei of the cat. Bull John Hopkins Hosp 104:211–251.

    CAS  Google Scholar 

  • Sachs MB, Abbas PJ (1974) Rate-versus level functions for auditory-nerve fibers in cats: tone-burst stimuli. J Acoust Soc Am 56:1835–1847.

    Article  CAS  PubMed  Google Scholar 

  • Sachs MB, Young ED (1979) Encoding of steady-state vowels in the auditory nerve: representation in terms of discharge rate. J Acoust Soc Am 66:470–479.

    Article  CAS  PubMed  Google Scholar 

  • Schofield BR (1995) Projections from the cochlear nucleus to the superior para-olivary mucleus in guinea pigs. J Comp Neurol 360:135–149.

    Article  CAS  PubMed  Google Scholar 

  • Schofield BR, Cant NB (1997) Ventral nucleus of the lateral lemniscus in guinea pigs: cytoarchitecture and inputs from the cochlear nucleus. J Comp Neurol 379:363–385.

    Article  CAS  PubMed  Google Scholar 

  • Schouten J (1940) The residue and the mechanism of hearing. Proc K Ned Akad Wet 43:991–999.

    Google Scholar 

  • Schreiner CE, Langner G (1988) Periodicity coding in the inferior colliculus of the cat II. Topographical organisation. J Neurophysiol 60:1823–1840.

    CAS  PubMed  Google Scholar 

  • Schrottge I, Scheich H, Schuze H (2004) Neuronal responses to amplitude modulated sounds in the Mongolian gerbil auditory midbrain and cortex: periodicity coding or responses to distortion products? Assoc Res Otolaryngol Abstr 27:289.

    Google Scholar 

  • Schulze H, Langner G (1999) Auditory cortical responses to amplitude modulations with spectra above frequency receptive fields: evidence for wide spectral integration. J Comp Physiol 185:493–508.

    Article  CAS  Google Scholar 

  • Schulze H, Hess A, Ohl FW, Scheich H (2002) Superposition of horseshoe-like periodicity and linear tonotopic maps in auditory cortex of the Mongolian gerbil. Eur J Neurosci 15:1077–1084.

    Article  PubMed  Google Scholar 

  • Schwartz DWF, Tomlinson RWW (1990) Spectral response properties of auditory cortex neurons to harmonic complex tones in alert monkey (Macaca mulatta). J Neurophysiol 64:282–299.

    Google Scholar 

  • Semal C, Demany L (1990) The upper limit of musical pitch. Music Percept 8:165–176.

    Google Scholar 

  • Semple MN, Kitzes LM (1987) Binaural processing of sound pressure level in the inferior colliculus. J Neurophysiol 57:1130–1147.

    CAS  PubMed  Google Scholar 

  • Semple MN, Scott BH (2003) Cortical mechanisms in hearing. Curr Opin Neurobiol 13:167–173.

    Article  CAS  PubMed  Google Scholar 

  • Shamma SA (1985a) Speech processing in the auditory system. I. The representation of speech sound sin the responses of the auditory nerve. J Acoust Soc Am 78:1612–1621.

    CAS  PubMed  Google Scholar 

  • Shamma SA (1985b) Speech processing in the auditory system. II. Lateral inhibition and the central processing of speech evoked activity in the auditory nerve. J Acoust Soc Am 78:1622–1632.

    CAS  PubMed  Google Scholar 

  • Shamma SA, Klein D (2000) The case of the missing pitch templates: how harmonic templates emerge in the early auditory system. J. Acoust Soc Am 107:2631–2644.

    CAS  PubMed  Google Scholar 

  • Shera CA, Guinan JJ, Oxenham AJ (2002) Revised estimates of human cochlear tuning from otoacoustic and behavioral measurements. Proc Natl Acad Sci USA 99:3318–3323.

    Article  CAS  PubMed  Google Scholar 

  • Shofner WP (1991) Temporal representation of rippled noise in the anteroventral cochlear nucleus of the chinchilla. J Acoust Soc Am 90:2450–2466.

    Article  CAS  PubMed  Google Scholar 

  • Shofner WP (1999) Responses of cochlear nucleus units in the chinchilla to iterated rippled noises: quantitative analysis of neural autocorrelograms of primarylike and chopper units. J Neurophysiol 81:2662–2674.

    CAS  PubMed  Google Scholar 

  • Shofner WP, Dye R (1989) Statistical and receiver operating characteristic analysis of empirical spike count distributions: quantifying the ability of cochlear nucleus units to signal intensity changes. J Acoust Soc Am 86:2171–2184.

    Article  Google Scholar 

  • Shofner WP, Sachs, MB (1986) Representation of a low-frequency tone in the discharge rate of populations of auditory nerve fibers. Hear Res 21:91–95.

    Article  CAS  PubMed  Google Scholar 

  • Siddhartha KC, Wang X (2003) Spectral integration in A1 of awake primates: neurons with single and multi-peaked tuning characteristics. J Neurophysiol 89:1603–1622.

    Google Scholar 

  • Slaney M, Lyon R (1990) A perceptual pitch detector. Proc ICASSP 90, Alburquerque, New Mexico.

    Google Scholar 

  • Smith PH, Rhode WS (1989) Structural and functional properties distinguish two types of multipolar cells in the ventral cochlear nucleus. J Comp Neurol 282:595–616.

    Article  CAS  PubMed  Google Scholar 

  • Smith PH Joris PX, Banks MI, Yin TCT (1993) Responses of cochlear nucleus cells and projections of their axons. In: Merchan MA, Juiz JM, Godfrey DA, Mugnaini E (ed), The Mammalian Cochlear Nuclei: Organisation and Function. New York: Plenum Press, pp. 349–360.

    Google Scholar 

  • Srulovicz P, Goldstein JL (1983) A central spectrum model: synthesis of auditory-nerve timing and place cues in monaural communication of frequency spectrum. J Acoust Soc Am 73:1266–1276.

    Article  CAS  PubMed  Google Scholar 

  • Steinschneider M, Reser DH, Fishnan YI, Schroeder CE, Arezzo JC (1998) Click train encoding in primary auditory cortex of the awake monkey: evidence for two mechanisms subserving pitch perception J Acoust Soc Am 104:2935–2955.

    Article  CAS  PubMed  Google Scholar 

  • Suga N, Gao E, Zhang Y, Ma X, Olsen JF (2000) The corticofugal system for hearing: recent progress. Proc Natl Acad Sci USA 97:11807–11814.

    Article  CAS  PubMed  Google Scholar 

  • Sutter ML, Schreiner CE (1991) Physiology and topography of neurons with multi-peaked tuning curves in cat primary auditory cortex. J Neurophysiol 65:1207–1226.

    CAS  PubMed  Google Scholar 

  • Terhardt E (1975) Influence of intensity on the pitch perception of complex tones. Acustica 33:344–348.

    Google Scholar 

  • Tomlinson RWW, Schwartz DWF (1988) Perception of the missing fundamental in nonhuman primates. J Acoust Soc Am 84:560–565.

    Article  CAS  PubMed  Google Scholar 

  • Ulanovsky N, Las L, Nelken I (2003) Processing of low-probability sounds by cortical neurons. Nat Neurosci 6:391–398.

    Article  CAS  PubMed  Google Scholar 

  • Vater M, Covey E, Casseday, JH (1997) The columnar region of the ventral nucleus of the lateral lemniscus in the big brown bat (Eptesicus fuscsu): synaptic arrangements and structural correlates of feedforward inhibitory function. Cell Tissue Res 289:223–233.

    Article  CAS  PubMed  Google Scholar 

  • Verhey JL, Neuert V, Winter IM (2004) Responses of single units in the mammalian cochlear nucleus to iterated rippled noise with negative gain. Assoc Res Otolaryngol Abstr 27:309.

    Google Scholar 

  • Wallace MN, Shackleton TM Palmer AR (2002) Phase-locked responses to pure tones in the primary auditory cortex. Hear Res 163:1–12.

    Google Scholar 

  • Weiss TF Rose C (1988) A comparison of synchronization filters in different auditory receptor organs. Hear Res 33:175–180.

    CAS  PubMed  Google Scholar 

  • Wessinger CM, VanMeter J, Tian B, Van Lare J, Pekar J, Rauschecker JP (2001) Hiearchical organization of the human auditory cortex revealed by functional magnetic resonance imaging. J Cogn Neurosci 13:1–7.

    Article  CAS  PubMed  Google Scholar 

  • White LJ Plack CJ (1988) Temporal processing of the pitch of complex tones. J Acoust Soc Am 103:2051–2063.

    Google Scholar 

  • Whitfield IC (1980) Auditory cortex and the pitch of complex tones. J Acoust Soc Am 67:644–647.

    Article  CAS  PubMed  Google Scholar 

  • Wiegrebe L, Meddis R (2004) The representation of periodic sounds in simulated sustained chopper units of the ventral cochlear nucleus. J Acoust Soc Am 115:1207–1218.

    Article  PubMed  Google Scholar 

  • Wiegrebe L, Patterson RD (1999) The role of modulation in the pitch of high-pass filtered iterated rippled noise. Hear Res 132:94–108.

    Article  CAS  PubMed  Google Scholar 

  • Wiegrebe L, Winter IM (2001) Temporal representation of iterated rippled noise as a function of delay and sound level in the ventral cochlear nucleus. J. Neurophysiol 85:1206–1219.

    CAS  PubMed  Google Scholar 

  • Willard FH, Ryugo DK (1983) Anatomy of the central auditory system. In: Willot JF (ed), The Auditory Psychobiology of the Mouse. Springfield, IL: Charles C. Thomas, pp. 201–304.

    Google Scholar 

  • Winslow R, Sachs MB (1988) Single tone intensity discrimination based on auditory nerve fiber responses in backgrounds of quiet, noise and with stimulation of the crossed olivocochlear bundle. Hear Res 35:165–190.

    Article  CAS  PubMed  Google Scholar 

  • Winter IM, Palmer AR (1990a) Responses of single units in the anteroventral cochlear nucleus of the guinea pig. Hear Res 44:161–178.

    Article  PubMed  Google Scholar 

  • Winter IM, Palmer AR (1990b) Temporal responses of primarylike anteroventral cochlear nucleus units to the steady-state vowel /i/. J Acoust Soc Am 88:1437–1441.

    Article  CAS  PubMed  Google Scholar 

  • Winter IM, Palmer AR (1995) Level dependence of cochlear nucleus onset unit responses and facilitation by second tones or broadband noise. J Neurophysiol 73:141–159.

    CAS  PubMed  Google Scholar 

  • Winter IM, Robertson D, Yates GK (1990) Diversity of characteristic frequency rate-level functions in guinea pig auditory nerve fibers. Hear Res 45:191–202.

    Article  CAS  PubMed  Google Scholar 

  • Winter IM, Wiegrebe L, Patterson RD (2001) The temporal representation of the delay of iterated rippled noise in the ventral cochlear nucleus of the guinea pig. J Physiol 537:553–566.

    Article  CAS  PubMed  Google Scholar 

  • Yan J, Ehret G (2002) Corticofugal modulation of midbrain sound processing in the house mouse. Eur J Neurosci 16:119–128.

    PubMed  Google Scholar 

  • Yates GK, Robertson D, Winter IM (1990) Basilar membrane nonlinearity determines auditory nerve rate-intensity functions and cochlear dynamic range. Hear Res 45:203–220.

    Article  CAS  PubMed  Google Scholar 

  • Yost WA, Patterson RD, Sheft S (1996) A time domain description for the pitch strength of iterated rippled noise. J Acoust Soc Am 99:1066–1078.

    CAS  PubMed  Google Scholar 

  • Young ED, Barta P (1986) Rate responses of auditory nerve fibres to tones in noise near masked threshold. J Acoust Soc Am 79:426–442.

    Article  CAS  PubMed  Google Scholar 

  • Young ED, Sachs MB (1979) Representation of steady-state vowels in the temporal aspects of discharge patterns of populations of auditory nerve fibers. J Acoust Soc Am 66:1381–1403.

    CAS  PubMed  Google Scholar 

  • Young ED, Sachs MB (1980) Effects of nonlinearities on speech coding in the auditory nerve. J Acoust Soc Am 68:858–875.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Winter, I.M. (2005). The Neurophysiology of Pitch. In: Plack, C.J., Fay, R.R., Oxenham, A.J., Popper, A.N. (eds) Pitch. Springer Handbook of Auditory Research, vol 24. Springer, New York, NY. https://doi.org/10.1007/0-387-28958-5_4

Download citation

Publish with us

Policies and ethics