Skip to main content

Morphological Decomposition Systems with Perfect Reconstruction: From Pyramids to Wavelets

  • Chapter
Space, Structure and Randomness

Part of the book series: Lecture Notes in Statistics ((LNS,volume 183))

  • 1520 Accesses

Abstract

Multiresolution methods in signal and image processing are very useful for the following reasons: (i) there is substantial evidence that the human visual system processes visual information in a ‘multiresolution’ fashion; (ii) often, images contain features of physically significant structure at different resolutions; (iii) sensors may provide data of the same source at multiple resolutions; (iv) multiresolution image processing algorithms offer computational advantages and, moreover, appear to be robust.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Braga-Neto, U., Goutsias, J.: A multiscale approach to connectivity. Computer Vision and Image Understanding, 89, 70–107 (2003)

    Article  MATH  Google Scholar 

  2. Braga-Neto, U., Goutsias, J.: Supremal multiscale analysis. SIAM Journal of Mathematical Analysis, 36, 94–120 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bruekers, F. A. M. L., van den Enden, A. W. M.: New networks for perfect inversion and perfect reconstruction. IEEE Journal on Selected Areas in Communications, 10, 130–137 (1992)

    Article  Google Scholar 

  4. Burt, P. J., Adelson, E. H.: The Laplacian pyramid as a compact image code. IEEE Transactions on Communications, 31, 532–540 (1983)

    Article  Google Scholar 

  5. Calderbank, A. R., Daubechies, I., Sweldens, W., Yeo, B.-L.: Wavelet transforms that map integers to integers. Applied and Computational Harmonic Analysis, 5, 332–369 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  6. Cha, H., Chaparro, L. F.: Adaptive morphological representation of signals: Polynomial and wavelet methods. Multidimensional Systems and Signal Processing, 8, 249–271 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  7. Claypoole, R. L., Baraniuk, R. G., Nowak, R. D.: Adaptive wavelet transforms via lifting. In: Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing. Seattle, Washington (1998)

    Google Scholar 

  8. Claypoole, R. L., Baraniuk, R. G., Nowak, R. D.: Lifting construction of nonlinear wavelet transforms. In: Proceedings of the IEEE-SP International Symposium on Time-Frequency and Time-Scale Analysis. Pittsburgh, Pennsylvania (1998).

    Google Scholar 

  9. Claypoole, R. L., Baraniuk, R. G., Nowak, R. D.: Adaptive wavelet transforms via lifting. Technical Report 9304, Department of Electrical and Computer Engineering, Rice University. Houston (1999)

    Google Scholar 

  10. Claypoole, R. L., Davis, G., Sweldens, W., Baraniuk, R. D.: Nonlinear wavelet transforms for image coding. In: Proceedings of the 31st Asilomar Conference on Signals, Systems, and Computers. 1, 662–66 (1997)

    Google Scholar 

  11. Daubechies, I., Sweldens, W.: Factoring wavelet transforms into lifting steps. Journal of Fourier Analysis and Applications, 4, 245–267 (1998)

    Article  MathSciNet  Google Scholar 

  12. Daubechies, I.: Ten Lectures on Wavelets. Society for Industrial and Applied Mathematics. Philadelphia (1992)

    MATH  Google Scholar 

  13. de Queiroz, R. L., Florêncio, D. A. F., Schafer, R. W.: Nonexpansive pyramid for image coding using a nonlinear filterbank. IEEE Transactions on Image Processing, 7, 246–252 (1998)

    Article  Google Scholar 

  14. Egger, O., Li, W., Kunt, M.: High compression image coding using an adaptive morphological subband decomposition. Proceedings of the IEEE, 83, 272–287 (1995)

    Article  Google Scholar 

  15. Egger, O., Li, W.: Very low bit rate image coding using morphological operators and adaptive decompositions. In: Proceedings of the IEEE International Conference on Image Processing. Austin (1994)

    Google Scholar 

  16. Florêncio, D. A. F., Schafer, R. W.: A non-expansive pyramidal morphological image coder. In: Proceedings of the IEEE International Conference on Image Processing. Austin (1994)

    Google Scholar 

  17. Florêncio, D. A. F.: A New Sampling Theory and a Framework for Nonlinear Filter Banks. PhD Thesis, Georgia Institute of Technology. Atlanta (1996)

    Google Scholar 

  18. Goutsias, J., Heijmans, H. J. A. M.: Nonlinear multiresolution signal decomposition schemes — Part I: Morphological pyramids. IEEE Transactions on Image Processing, 9, 1862–1876 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  19. Goutsias, J., Schonfeld, D.: Morphological representation of discrete and binary images. IEEE Transactions on Signal Processing, 39, 1369–1379 (1991)

    Article  Google Scholar 

  20. Hampson, F. J., Pesquet, J.-C.: A nonlinear subband decomposition with perfect reconstruction. In: Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing. Atlanta (1996)

    Google Scholar 

  21. Hampson, F. J., Pesquet, J.-C.: M-band nonlinear subband decompositions with perfect reconstruction. IEEE Transactions on Image Processing, 7, 1547–1560 (1998)

    Article  Google Scholar 

  22. Hampson, F. J.: Méthodes Non Linéaires en Codage d’Images et Estimation de Mouvement. PhD thesis, l’Université Paris XI Orsay. Paris (1997)

    Google Scholar 

  23. Heijmans, H. J. A. M., Goutsias, J.: Morphology-based perfect reconstruction filter banks. In: Proceedings of the IEEE-SP International Symposium on Time-Frequency and Time-Scale Analysis. Pittsburgh (1998)

    Google Scholar 

  24. Heijmans, H. J. A. M., Goutsias, J.: Constructing morphological wavelets with the lifting scheme. In: Proceedings of the Fifth International Conference on Pattern Recognition and Information Processing. Minsk, Belarus (1999)

    Google Scholar 

  25. Heijmans, H. J. A. M., Goutsias, J.: Nonlinear multiresolution signal decomposition schemes — Part II: Morphological wavelets. IEEE Transactions on Image Processing, 9, 1897–1913 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  26. Heijmans, H. J. A. M.: Morphological Image Operators. Academic Press, Boston (1994)

    MATH  Google Scholar 

  27. Kamstra, L.: Discrete wavelet transforms over finite sets which are translation invariant. Research Report PNA-R0112, CWI. Amsterdam (2001)

    Google Scholar 

  28. Keshet (Kresch), R., Heijmans, H. J. A. M.: Adjunctions in pyramids and curve evolution. In: Kerckhove. M. (ed) Scale-Space and Morphology in Computer Vision. Springer-Verlag, Berlin (2001)

    Google Scholar 

  29. Keshet (Kresch), R., Heijmans, H. J. A. M.: Adjunctions in pyramids, curve evolution and scale-spaces. International Journal of Computer Vision. 52, 139–151 (2003)

    Article  Google Scholar 

  30. Mallat, S.: A Wavelet Tour of Signal Processing. Academic Press, San Diego (1998)

    MATH  Google Scholar 

  31. Maragos, P.: Pattern spectrum and multiscale shape representation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 11, 701–716 (1989)

    Article  MATH  Google Scholar 

  32. Matheron, G.: Random Sets and Integral Geometry. John Wiley, New York (1075)

    Google Scholar 

  33. Piella, G., Heijmans, H. J. A. M.: Adaptive lifting schemes with perfect reconstruction. Research Report PNA-R0104, CWI. Amsterdam (2001)

    Google Scholar 

  34. Piella, G., Heijmans, H. J. A. M.: Adaptive lifting schemes with perfect reconstruction. IEEE Transactions on Signal Processing, 50, 1620–1630, 2002.

    Article  Google Scholar 

  35. Piella, G., Pesquet-Popescu, B., Heijmans, H.: Adaptive update lifting with a decision rule based on derivative filters. IEEE Signal Processing Letters, 9, 329–332, 2002.

    Article  Google Scholar 

  36. Serra, J.: Image Analysis and Mathematical Morphology. Academic Press, London (1982)

    MATH  Google Scholar 

  37. Serra, J.: Image Analysis and Mathematical Morphology. Volume 2: Theoretical Advances. Academic Press, London (1988)

    Google Scholar 

  38. Song, X., Neuvo, Y.: Image compression using nonlinear pyramid vector quantization. Multidimensional Systems and Signal Processing, 5, 133–149 (1994)

    Article  MATH  Google Scholar 

  39. Swanson, M. D., Tewfik, A. H.: A binary wavelet decomposition of binary images. IEEE Transactions on Image Processing, 5, 1637–1650 (1996)

    Article  Google Scholar 

  40. Sweldens, W.: The lifting scheme: A new philosophy in biorthogonal wavelet constructions. In: Lain, A. F., Unser, M. (eds) Wavelet Applications in Signal and Image Processing III. Proceedings of SPIE, 2569, 68–79 (1995)

    Google Scholar 

  41. Sweldens, W.: The lifting scheme. A custom-design construction of biorthogonal wavelets. Applied and Computational Harmonic Analysis, 3, 186–200 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  42. Sweldens, W.: The lifting scheme. A construction of second generation wavelets. SIAM Journal of Mathematical Analysis, 29, 511–546 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  43. Toet, A.: A morphological pyramidal image decomposition. Pattern Recognition Letters, 9, 255–261 (1989).

    Article  MATH  Google Scholar 

  44. Vetterli, M., Kovačević, J.: Wavelets and Subband Coding. Prentice Hall, Englewood Cliffs (1995)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Heijmans, H.J.A.M., Goutsias, J. (2005). Morphological Decomposition Systems with Perfect Reconstruction: From Pyramids to Wavelets. In: Bilodeau, M., Meyer, F., Schmitt, M. (eds) Space, Structure and Randomness. Lecture Notes in Statistics, vol 183. Springer, New York, NY. https://doi.org/10.1007/0-387-29115-6_12

Download citation

Publish with us

Policies and ethics