Skip to main content

Logical Axiomatizations of Space-Time. Samples from the Literature

  • Chapter
Non-Euclidean Geometries

Part of the book series: Mathematics and Its Applications ((MAIA,volume 581))

Abstract

We study relativity theory as a theory in the sense of mathematical logic. We use first-order logic (FOL) as a framework to do so. We aim at an “analysis of the logical structure of relativity theories”. First we build up (the kinematics of) special relativity in FOL, then analyze it, and then we experiment with generalizations in the direction of general relativity. The present paper gives samples from an ongoing broader research project which in turn is part of a research direction going back to Reichenbach and others in the 1920’s. We also try to give some perspective on the literature related in a broader sense. In the perspective of the present work, axiomatization is not a final goal. Axiomatization is only a first step, a tool. The goal is something like a conceptual analysis of relativity in the framework of logic.

In section 1 we recall a complete FOL-axiomatization Specrel of special relativity from [5, 32]. In section 2 we answer questions from papers by Ax and Mundy concerning the logical status of faster than light motion (FTL) in relativity. We claim that already very small/weak fragments of Specrel prove “No FTL”. In section 3 we give a sketchy outlook for the possibility of generalizing Specrel to theories permitting accelerated observers (gravity). In section 4 we continue generalizing Specrel in the direction of general relativity by localizing it, i.e. by replacing it with a version still in first-order logic but now local (in the sense of general relativity theory). In section 5 we give samples from the broader literature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. Alexandrov, A. D.: On foundations of space-time geometry. I., Soviet Math. Dokl., 15, 1974, 1543–1547

    Google Scholar 

  2. Andréka, H. and Goranko, V. and Mikulás, Sz. and Németi, I. and Sain, I.: Effective first order temporal logics, in Time and Logic, a computational approach, Ed. by L. Bolc and A. Szałas, UCL Press Ltd., London, 1995, 51–129

    Google Scholar 

  3. Andréka, H. and Madarász, J. X. and Németi, I.: Logical analysis of special relativity, in JFAK. Essays Dedicated to Johan van Benthem on the Occasion of his 50th Birthday, Gerbrandy, J. and Marx, M. and de Rijke, M. and Venema, Y., editor, Vossiuspers, Amsterdam University Press, http://www.wins.uva.nl/~j50/cdrom, 1999, CD-ROM, ISBN: 90 5629 104 1, 23pp

    Google Scholar 

  4. Andréka, H. and Madarász, J. X. and Németi, I.: Logical analysis of relativity theories, In Hendricks et al., editor, First Order Logic Revisited, Logos Verlag Berlin, 2004, 7–36

    Google Scholar 

  5. Andréka, H. and Madarász, J. X. and Németi, I.: On the logical structure of relativity theories, Alfréd Rényi Institute of Mathematics, Hungar. Acad. Sci., Budapest, Research Report, July 5, 2002, with contributions from A. Andai, G. Sági, I. Sain and Cs. Tőke. http://www.math-inst.hu/pub/algebraiclogic/Contents.html. 1312 pp.

    Google Scholar 

  6. Andréka, H. and Madarász, J. X. and Székely, G.: Seminar notes, Alfréd Rényi Institute of Mathematics, Budapest, 2003

    Google Scholar 

  7. Andréka, H. and van Benthem, J. and Németi, I.: Modal languages and bounded fragments of predicate logic, Journal of Philosophical Logic, 65, 1998, 217–274

    Article  Google Scholar 

  8. Andréka, H. and Németi, I.: Course Notes, ELTE University Budapest, 2000

    Google Scholar 

  9. Ax, J.: The elementary foundations of spacetime, Found. Phys., 8,7–8, 1978, 507–546

    Article  MathSciNet  Google Scholar 

  10. Barbour, J. B.: Absolute or relative motion?, Cambridge University Press, 1989

    Google Scholar 

  11. Basri, S.: A deductive theory of space and time, North-Holland Publishing Co, Amsterdam, 1966

    MATH  Google Scholar 

  12. Busemann, H.: Time-like spaces, Dissertationes Math. (Rozprawy Math.), 53, 1967

    Google Scholar 

  13. Carathéodory, C.: Zur Axiomatik der speziellen Relativitätstheorie, Sitzungsber. phys. math., 14. Febr., 1924, 12–27

    Google Scholar 

  14. Einstein, A.: On the special and the general theories of relativity, Verlag von F. Vieweg & Son, Braunschweig, 1921, In German

    Google Scholar 

  15. Feferman, S.: Theories of finite type related to mathematical practice, Handbook of Mathematical Logic, Barwise, J., editor, North-Holland, 1977, 913–971

    Google Scholar 

  16. Ferreirós, J.: The road to modern logic — an interpretation, The Bulletin of Symbolic Logic, 7,4, 2001, 441–484

    Article  MATH  MathSciNet  Google Scholar 

  17. Fetzer, J. H. and Shatz, D. and Schlesinger, G. N.: Definitions and definability: philosophical perspectives, Kluwer Academic Publishers, 1991

    Google Scholar 

  18. Friedman, M.: Foundations of Space-Time Theories. Relativistic Physics and Philosophy of Science, Princeton University Press, 1983

    Google Scholar 

  19. Friedman, M.: Reconsidering logical positivism, Cambridge University Press, 1999

    Google Scholar 

  20. Gibbs, Ph.: Is faster than light travel or communication possible?, Internet, www.math.ucr.edu/home/baez/physics/Relativity/SpeedOfLight/FTL.html, 1997

    Google Scholar 

  21. Gödel, K.: An example of a new type of cosmological solutions of Einstein’s field equations of gravitation, Reviews of Modern Physics, 21, 1949, 447–450

    Article  MATH  MathSciNet  Google Scholar 

  22. Gödel, K.: Lecture on rotating universes, Kurt Gödel Collected Works, Vol. III., Ed. Feferman, S. Dawson, J.W. Goldfarb, W. Parsons, C. Solovay, R. N., Oxford University Press, New York Oxford, 1995, 261–289

    Google Scholar 

  23. Goldblatt, R.: Orthogonality and Spacetime Geometry, Springer-Verlag, 1987

    Google Scholar 

  24. Guts, A. K.: Axiomatic relativity theory, Russian Math. Survey, 37,2, 1982, 41–89

    Article  MATH  MathSciNet  Google Scholar 

  25. Henkin, L. and Suppes, P. and Tarski, A.: The axiomatic method with special reference to geometry and physics, Studies in Logic and the Foundations of Mathematics, North-Holland, 1959

    Google Scholar 

  26. Hintikka, J.: Towards a general theory of identifiability, in Definitions and definability: philosophical perspectives, Kluwer Academic Publishers, 1991, 161–183

    Google Scholar 

  27. Hogarth, M.: Conventionality of simultaneity: Malament’s result revisited, Cambridge University, 2003, Manuscript

    Google Scholar 

  28. Hogarth, M.: Deciding arithmetic in Malament-Hogarth spacetimes, 2001, University of Cambridge (UK), preprint

    Google Scholar 

  29. Latzer, R. W.: Nondirected light signals and the structure of time, Synthese, 24, 1972, 236–280

    Article  MATH  Google Scholar 

  30. Lester, J. A,: Distance preserving transformations, in Handbook of Incidence Geometry, Buekenhout, F., editor, Elsevier Science B. V., 1995, 921–944

    Google Scholar 

  31. Lewis, D.: The paradoxes of time travel, in David Lewis Philosophical Papers Volume II, Oxford University Press, New York, Oxford, 1986, 67–80

    Google Scholar 

  32. Madarász, J. X.: Logic and Relativity (in the light of definability theory), ELTE, Budapest, http://www.math-inst.hu/pub/algebraic-logic/Contents.html., 2002

    Google Scholar 

  33. Madarász, J. X. and Németi, I.: On faster than light observers, Part I., Manuscript, Budapest, 1998

    Google Scholar 

  34. Madarász, J. X. and Németi, I.: On FTL observers in a generalized version of first-order relativity (The generalization is in the direction of partiality coming from general relativity), 1999, Manuscript in preparation

    Google Scholar 

  35. Madarász, J. X. and Németi, I. and Tőke, Cs.: Local relativity theories, in First-Order Logic’75, Logos Verlag, Berlin, 2004, 225–268

    Google Scholar 

  36. Madarász, J. X. and Tőke, Cs.: Duality between observational and theoretical concepts in relativity theory analyzed by FOL and definability theory, Szeged, Hungary, Extended abstract, July, 2003, Proceedings of the Kalmár Workshop on Logic and Computer Science, 133–142

    Google Scholar 

  37. Madarász, J. X. and Tőke, Cs.: Partial relativity theories, Alfréd Rényi Institute of Mathematics, Hungar. Acad. Sci., Budapest, Research Report, July, 2003

    Google Scholar 

  38. Malament, D.: Casual theories of time and the conventionallity of simultaneity, Noûs, 11, 1977, 293–300

    Google Scholar 

  39. Matolcsi, T. and Rodrigues, W. A. Jr.: Geometry of Spacetime with Superluminal Phenomena, Algebr. Group Geom, 14, 1997, 1–16

    MathSciNet  MATH  Google Scholar 

  40. Misner, C. W. and Thorne, K. S. and Wheeler, J. A.: Gravitation, W. H. Freeman, San Francisco, 1973

    Google Scholar 

  41. Muis, R.: Physical Structures, Master Thesis, University of Utrecht, December 2002, www.phys.uu.nl/~wwwgrnsl/muis/scriptie.pdf

    Google Scholar 

  42. Mundy, J.: The philosophical content of Minkowski geometry, British J. Philos. Sci., 37,1, 1986, 25–54

    MATH  MathSciNet  Google Scholar 

  43. Novikov, I. D.: The river of time, Cambridge University Press, Cambridge, England, 1998

    MATH  Google Scholar 

  44. Pambuccian, V.: Axiomatizations of hyperbolic and absolute geometries, Non-Euclidean Geometries, Kluwer, 2004

    Google Scholar 

  45. Reichenbach, H.: Axiomatization of the theory of relativity, University of California Press, Berkeley, 1969, Translated by M. Reichenbach. Orignal German edition published in 1924.

    Google Scholar 

  46. Robb, A. A.: A Theory of Time and Space, Cambridge University Press, 1914, Revised edition, Geometry of Time and Space, published in 1936

    Google Scholar 

  47. Rudin, W.: Principles of Mathematical analysis, McGraw-Hill, New York, 1953

    MATH  Google Scholar 

  48. Sain, I.: Dynamic logic with nonstandard model theory, Hungarian Academy of Sciences, Budapest, 1986, ix+180pp, (In Hungarian)

    Google Scholar 

  49. Schelb, U.: Zur physikalischen Begründung der Raum-Zeit-Geometrie, Habilitationsschrift, Fachbereich Physik der Universität Paderborn, August 1997, 327pp, www.phys.uni-paderborn.de/udo

    Google Scholar 

  50. Schutz, J. W.: Independent axioms for Minkowski space-time, Longman, London, 1997

    MATH  Google Scholar 

  51. Suppes, P.: Axioms for relativistic kinematics with or without parity, in Henkin, L. and Tarski, A. and Suppes, P.: Symposium on the Axiomatic Method with Special Reference to Physics, North-Holland, 1959, 291–307

    Google Scholar 

  52. Suppes, P.: The desirability of formalization in science, The Journal of Philosophy, 27, 1968, 651–664

    Article  Google Scholar 

  53. Suppes, P.: Some open problems in the philosophy of space and time, Synthese, 24, 1972, 298–316

    Article  MATH  Google Scholar 

  54. Székely, G.: Accelerated observers and the twin paradox, Master Thesis, ELTE, Budapest, 2004

    Google Scholar 

  55. Székely, G.: A first-order logic investigation of the Twin Paradox, Manuscript, ELTE, Budapest (in Hungarian), 23pp., 2003

    Google Scholar 

  56. Szekeres, G.: Kinematic geometry: an axiomatic system for Minkowski spacetime, Journal of the Australian Mathematical Society, 8, 1968, 134–160

    Article  MATH  MathSciNet  Google Scholar 

  57. Takeuti, G.: Proof Theory, North-Holland, 1987

    Google Scholar 

  58. Tarski, A.: What is elementary geometry?, in The Axiomatic Method with Special Reference to Geometry and Physics, Henkin, L. and Suppes, P. and Tarski, A., editor, North-Holland, Amsterdam, 1959, 16–29

    Google Scholar 

  59. Väänänen, J.: Second-order logic and foundations of mathematics, The Bulletin of Symbolic Logic, 7,4, 2001, 504–520

    Article  MATH  MathSciNet  Google Scholar 

  60. Walker, A. G.: Axioms for Cosmology, in The Axiomatic Method with Special Reference to Geometry and Physics, Henkin, L. and Suppes, P. and Tarski, A., editor, North-Holland, Amsterdam, 1959, 308–321

    Google Scholar 

  61. Woleński, J.: First-order logic: (Philosophical) pro and contra, in First-order Logic’75, Logos Verlag, Berlin, 2004

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Andréka, H., Madarász, J.X., Németi, I. (2006). Logical Axiomatizations of Space-Time. Samples from the Literature. In: Prékopa, A., Molnár, E. (eds) Non-Euclidean Geometries. Mathematics and Its Applications, vol 581. Springer, Boston, MA. https://doi.org/10.1007/0-387-29555-0_8

Download citation

Publish with us

Policies and ethics