Skip to main content

The Glial Response to Injury and Its Role in the Inhibition of CNS Repair

  • Chapter
Brain Repair

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 557))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Reier PJ, Stensaas LJ, Guth L. The astrocytic scar as an impediment to regeneration in the central nervous system. In: Kao CC, Bunge RP, Reier PJ, eds. Spinal cord reconstruction. New York: Raven Press, 1983:163–195.

    Google Scholar 

  2. Perry VH, Andersson PB, Gordon S. Macrophages and inflammation in the central-nervous-system. Trends Neurosci 1993; 16:268–273.

    Article  PubMed  CAS  Google Scholar 

  3. Raivich G, Bohatschek M, Kloss CU et al. Neuroglial activation repertiore in the injured brain: graded response, molecular mechanisms and cues to physiological function. Brain Res Rev 1999; 30:77–105.

    Article  PubMed  CAS  Google Scholar 

  4. Levine JM, Reynolds R, Fawcett JW. The oligodendrocyte precursor cell in health and disease. Trends Neurosci 2001; 24(1):39–47.

    Article  PubMed  CAS  Google Scholar 

  5. Levine JM, Reynolds R. Activation and proliferation of endogenous oligodendrocyte precursor cells during ethidium bromide-induced demyelination. Exp Neurol 1999; 160(2):333–347.

    Article  PubMed  CAS  Google Scholar 

  6. Wu VW, Schwartz JP. Cell culture models for reactive gliosis: New perspectives. J Neurosci Res 1998; 51:675–681.

    Article  PubMed  CAS  Google Scholar 

  7. Eddleston M, Mucke L. Molecular profile of reactive astrocytes—implications for their role in neurologic disease. Neuroscience 1993; 54:15–36.

    Article  PubMed  CAS  Google Scholar 

  8. Ridet JL, Malhotra SK, Privat A et al. Reactive astrocytes: cellular and molecular cues to biological function. Trends Neurosci 1997; 20:570–577.

    Article  PubMed  CAS  Google Scholar 

  9. Davies SJA, Field PM, Raisman G. Regeneration of cut adult axons fails even in the presence of continuous aligned glial pathways. Exp Neurol 1996; 142:203–216.

    Article  PubMed  CAS  Google Scholar 

  10. Bahr M. Adult-rat retinal glia in vitro—effects of invivo crush-activation on glia proliferation and permissiveness for regenerating retinal ganglion-cell axons. Exp Neurol 1991; 111:65–73.

    Article  PubMed  CAS  Google Scholar 

  11. McKeon RJ, Schreiber RC, Rudge JS et al. Reduction of neurite outgrowth in a model of glial scarring following CNS injury is correlated with the expression of inhibitory molecules on reactive astrocytes. J Neurosci 1991; 11:3398–3411.

    PubMed  CAS  Google Scholar 

  12. Anders JJ, Hurlock JA. Transplanted glial scar impedes olfactory bulb reinnervation. Exp Neurol 1996; 142:144–150.

    Article  PubMed  CAS  Google Scholar 

  13. Giftochristos N, David S. Immature optic nerve glia of rat do not promote axonal regeneration when transplanted into a peripheral nerve. Brain Res 1988; 467:149–153.

    PubMed  CAS  Google Scholar 

  14. Davies SJA, Fitch MT, Memberg SP et al. Regeneration of adult axons in white matter tracts of the central nervous system. Nature 1997; 390:680–684.

    PubMed  CAS  Google Scholar 

  15. Davies SJA, Goucher DR, Doller C et al. Robust regeneration of adult sensory axons in degenerating white matter of the adult rat spinal cord. J Neurosci 1999; 19(14):5810–5822.

    PubMed  CAS  Google Scholar 

  16. Carlstedt T, Cullheim S, Risling M et al. Nerve fibre regeneration across the PNS-CNS interface at the root-spinal cord junction. Brain Res Bull 1989; 22:93–102.

    Article  PubMed  CAS  Google Scholar 

  17. Chong MS, Woolf CJ, Turmaine M et al. Intrinsic versus extrinsic factors in determining the regeneration of the central processes of rat dorsal root ganglion neurons: the influence of a periperal nerve graft. J Comp Neurol 1996; 370:97–104.

    Article  PubMed  CAS  Google Scholar 

  18. Golding JP, Bird C, McMahon S et al. Behaviour of DRG sensory neurites at the intact and injured adult rat dorsal root entry zone: postnatal neurites become paralysed, whilst injury improves the growth of embryonic neurites. Glia 1999; 26(4):309–323.

    Article  PubMed  CAS  Google Scholar 

  19. Golding J, Shewan D, Cohen J. Maturation of the mammalian dorsal root entry zone—From entry to no entry. Trends Neurosci 1997; 20:303–308.

    Article  PubMed  CAS  Google Scholar 

  20. Xu XM, Guénard V, Kleitman N et al. Axonal regeneration into Schwann cell-seeded guidance channels grafted into transected adult rat spinal cord. J Comp Neurol 1995; 351:145–160.

    Article  PubMed  CAS  Google Scholar 

  21. Chierzi S, Strettoi E, Cenni MC et al. Optic nerve crush: Axonal responses in wild-type and bcl-2 transgenic mice. J Neurosci 1999; 19(19):8367–8376.

    PubMed  CAS  Google Scholar 

  22. Bandtlow CE, Schwab ME. NI-35/250/nogo-a: a neurite growth inhibitor restricting structural plasticity and regeneration of nerve fibers in the adult vertebrate CNS. Glia 2000; 29(2):175–181.

    Article  PubMed  CAS  Google Scholar 

  23. Schwab ME, Bartholdi D. Degeneration and regeneration of axons in the lesioned spinal cord. Physiol Rev 1996; 76:319–370.

    PubMed  CAS  Google Scholar 

  24. Grandpre T, Strittmatter SM. Nogo: a molecular determinant of axonal growth and regeneration. Neuroscientist 2001; 7(5):377–386.

    Article  PubMed  CAS  Google Scholar 

  25. Grandpre T, Nakamura F, Vartanian T et al. Identification of the Nogo inhibitor of axon regeneration as a Reticulon protein. Nature 2000; 403(6768):439–444.

    Article  PubMed  CAS  Google Scholar 

  26. Cai D, Qiu J, Cao Z et al. Neuronal cyclic amp controls the developmental loss in ability of axons to regenerate. J Neurosci 2001; 21(13):4731–4739.

    PubMed  CAS  Google Scholar 

  27. Tang S, Woodhall RW, Shen YJ et al. Soluble myelin-associated glycoprotein (MAG) found in vivo inhibits axonal regeneration. Mol Cell Neurosci 1997; 9(5–6):333–346.

    Article  PubMed  CAS  Google Scholar 

  28. Mukhopadhyay G, Doherty P, Walsh FS et al. A novel role for myelin-associated glycoprotein as an inhibitor of axonal regeneration. Neuron 1994; 13:757–767.

    Article  PubMed  CAS  Google Scholar 

  29. Fawcett JW, Housden E, Smith-Thomas L et al. The growth of axons in three dimensional astrocyte cultures. Dev Biol 1989; 135:449–458.

    Article  PubMed  CAS  Google Scholar 

  30. Smith-Thomas L, Stevens J, Fok-Seang J et al. Increased axon regeneration in astrocytes grown in the presence of proteoglycan synthesis inhibitors. J Cell Sci 1995; 108(3):1307–1315.

    PubMed  CAS  Google Scholar 

  31. Smith-Thomas L, Fok-Seang J, Stevens J et al. An inhibitor of neurite outgrowth produced by astrocytes. J Cell Sci 1994; 107:1687–1695.

    PubMed  CAS  Google Scholar 

  32. Fidler PS, Schuette K, Asher RA et al. Comparing astocytic cells lines that are inhibitory or permissive for axon growth: the major axon-inhibitory proteoglycan is NG2. J Neurosci 1999; 19:8778–8788.

    PubMed  CAS  Google Scholar 

  33. Fitch MT, Silver J. Glial cell extracellular matrix: Boundaries for axon growth in development and regeneration. Cell Tissue Res 1997; 290:379–384.

    Article  PubMed  CAS  Google Scholar 

  34. McKeon RJ, Höke A, Silver J. Injury-induced proteoglycans inhibit the potential for lamininmediated axon growth on astrocytic scars. Exp Neurol 1995; 136:32–43.

    Article  PubMed  CAS  Google Scholar 

  35. Fernaud-Espinosa I, Nieto-Sampedro M, Bovolenta P. A neurite outgrowth-inhibitory proteoglycan expressed during development is similar to that isolated from adult brain after isomorphic injury. Journal Of Neurobiology 1998; 36(1):16–29.

    Article  PubMed  CAS  Google Scholar 

  36. Bovolenta P, Wandosell F, Nieto-Sampedro M. Characterization of a neurite outgrowth inhibitor expressed after CNS injury. Eur J Neurosci 1993; 5:454–465.

    Article  PubMed  CAS  Google Scholar 

  37. Moon LDF, Asher RA, Rhodes KE et al. Regeneration of CNS axons back to their original target following treatment of adult rat brain with chondroitinase ABC. Nat Neurosci 2001; 4:465–466.

    PubMed  CAS  Google Scholar 

  38. Bradbury EJ, Moon LDF, Popat RJ et al. Chondroitinase ABC promotes axon regeneration and functional recovery following spinal cord injury. Nature 2002; in press.

    Google Scholar 

  39. Menet V, Ribotta M, Chauvet N et al. Inactivation of the glial fibrillary acidic protein gene, but not that of vimentin, improves neuronal survival and neurite growth by modifying adhesion molecule expression. J Neurosci 2001; 21(16):6147–6158.

    PubMed  CAS  Google Scholar 

  40. Matsui F, Watanabe E, Oohira A. Immunological identification of two proteoglycan fragments derived from neurocan, and brain specific chondroitin sulphate proteoglycan. Neurochem Int 1994; 25:425–431.

    Article  PubMed  CAS  Google Scholar 

  41. Asher RA, Fidler PS, Morgenstern DA et al. Neurocan is upregulated in injured brain and in cytokine-treated astrocytes. J Neurosci 2000; 20:2427–2438.

    PubMed  CAS  Google Scholar 

  42. McKeon RJ, Jurynec MJ, Buck CR. The chondroitin sulfate proteoglycans neurocan and phosphacan are expressed by reactive astrocytes in the chronic CNS glial scar. Journal Of Neuriscience 1999; 19(24):10778–10788.

    CAS  Google Scholar 

  43. Margolis RU, Margolis RK. Chondroitin sulfate proteoglycans as mediators of axon growth and pathfinding. Cell Tissue Res 1997; 290:343–348.

    Article  PubMed  CAS  Google Scholar 

  44. Grumet M, Friedlander DR, Sakurai T. Functions of brain chondroitin sulfate proteoglycans during developments: interactions with adhesion molecules. Perspect Dev Neurobiol 1996; 3(4):319–330.

    PubMed  CAS  Google Scholar 

  45. Schmalfeldt M, Dours ZM, Winterhalter KH et al. Versican V2 is a major extracellular matrix component of the mature bovine brain. J Biol Chem 1998; 273(25):15758–15764.

    Article  PubMed  CAS  Google Scholar 

  46. Asher RA, Morgenstern DA, Shearer MC et al. Versican is upregulated following CNS injury and is a product of oligodendrocyte lineage cells. J Neurosci 2002; 22:2225–2236.

    PubMed  CAS  Google Scholar 

  47. Niederost BP, Zimmermann DR, Schwab ME et al. Bovine CNS myelin contains neurite growth-inhibitory activity associated with chondroitin sulfate proteoglycans. J Neurosci 1999; 19:8979–8989.

    PubMed  CAS  Google Scholar 

  48. Schmalfeldt M, Bandtlow CE, Dours-Zimmermann MT et al. Brain derived versican V2 is a potent inhibitor of axonal growth. J Cell Sci 2000; 113(5):807–816.

    PubMed  CAS  Google Scholar 

  49. Jaworski DM, Kelly GM, Hockfield S. Intracranial injury acutely induces the expression of the secreted isoform of the CNS-specific hyaluronan-binding protein BEHAB brevican. Experimental Neurology 1999; 157(2):327–337.

    Article  PubMed  CAS  Google Scholar 

  50. Yamada H, Fredette B, Shitara K et al. The brain chondroitin sulfate proteoglycan brevican associates with astrocytes ensheathing cerebellar glomeruli and inhibits neurite outgrowth from granule neurons. J Neurosci 1997; 17(20):7784–7795.

    PubMed  CAS  Google Scholar 

  51. Asher RA, Morgenstern DA, Moon LD et al. Chondroitin sulphate proteoglycans: inhibitory components of the glial scar. Prog Brain Res 2001; 132:611–619.

    Article  PubMed  CAS  Google Scholar 

  52. Levine JM. Increased expression of the ng2 chondroitin-sulfate proteoglycan after brain injury. Journal Of Neuroscience 1994; 14:4716–4730.

    PubMed  CAS  Google Scholar 

  53. Goretzki L, Burg MA, Grako KA et al. High-affinity binding of basic fibroblast growth factor and platelet-derived growth factor-AA to the core protein of the NG2 proteoglycan. J Biol Chem 1999; 274(24):16831–16837.

    Article  PubMed  CAS  Google Scholar 

  54. Grako KA, Ochiya T, Barritt D et al. PDGF (alpha)-receptor is unresponsive to PDGF-AA in aortic smooth muscle cells from the NG2 knockout mouse. J Cell Sci 1999; 112 (Pt 6):905–915.

    PubMed  CAS  Google Scholar 

  55. Garwood J, Schnadelbach O, Clement A et al. DSD-1-proteoglycan is the mouse homolog of phosphacan and displas aopposing effects on neurite outrgrowth dependent on neuronal lineage. J Neurosci 1999; 19(10):3888–99.

    PubMed  CAS  Google Scholar 

  56. Margolis RK, Rauch U, Maurel P et al. Neurocan and phosphacan—2 major nervous tissue-specific chondroitin sulfate proteoglycans. Perspect Devel Neurobiol 1996; 3:273–290.

    CAS  Google Scholar 

  57. Garwood J, Schnädelbach O, Clement A et al. DSD-1-proteoglycan is the mouse homolog of phosphacan and displays opposing effects on neurite outgrowth dependent on neuronal lineage. J Neurosci 1999; 19(10):3888–3899.

    PubMed  CAS  Google Scholar 

  58. Snow DM, Brown EM, Letourneau PC. Growth cone behavior in the presence of soluble chondroitin sulfate proteoglycan (CSPG), compared to behavior on CSPG bound to laminin or fibronectin. Int J Dev Neurosci 1996; 14(3):331–349.

    Article  PubMed  CAS  Google Scholar 

  59. Clement A, Sugahara K, Faissner A. Chondroitin sulfate E promotes neurite outgrowth of embryonic day 18 hippocampal neurons. Neurosci Lett 1999; 269(3):125–8.

    Article  PubMed  CAS  Google Scholar 

  60. Morgenstern DA, Asher RA, Fawcett JW. Chondroitin sulphate proteoglycans in the CNS injury response. Progress In Brain Research 2002; Prog Brain Res 2002; 137:313–32.

    CAS  Google Scholar 

  61. Wilby MJ, Fok-Seang J, Blaschuk OW et al. N-Cadherin inhibits Schwann cell migration on astrocytes. Mol Cell Neurosci 1999; 14:66–84.

    Article  PubMed  CAS  Google Scholar 

  62. Iwashita Y, Fawcett JW, Crang AJ et al. Schwann cell transplanted into normal and irriadiated adult white matter do not migrate extensively and show poor long-term survival. Exp Neurol 2000; 164:192–202.

    Article  Google Scholar 

  63. Shields SA, Blakemore WF, Franklin RJM. Schwann cell remyelination is restricted to astrocyte-deficient areas after transplantation into demyelinated adult rat brain. J Neurosci Res 2000; 60(5):571–578.

    Article  PubMed  CAS  Google Scholar 

  64. Carlstedt T. Nerve fibre regeneration across the peripheral-central transitional zone. J Anat 1997; 190:51–56.

    Article  PubMed  Google Scholar 

  65. Carlstedt T. Regenerating axons form nerve terminals on astrocytes. Brain Res 1985; 347:188–191.

    Article  PubMed  CAS  Google Scholar 

  66. Liuzzi FJ, Lasek RJ. Astrocytes block axonal regeneration in mammals by activating the physiological stop pathway. Science 1987; 237:642–645.

    Article  PubMed  CAS  Google Scholar 

  67. Xu XM, Guénard V, Kleitman N et al. Combination of BDNF and NT-3 promotes supraspinal axonal regeneration into schwann cell grafts in adult rat thoracic spinal cord. Exp Neurol 1995; 134:261–272.

    Article  PubMed  CAS  Google Scholar 

  68. David S, Aguayo AJ. Axonal elongation into peripheral nervous system bridges after central nervous system injury in adult rats. Science 1981; 241:931–933.

    Article  Google Scholar 

  69. Adcock KH, Brown DJ, Shearer MC et al. Axon behaviour at Schwann cell astrocyte boundaries. Manipulation of axon signalling pathways and glia can enable axons to cross. Eur J Neurosci 2003; 20:1425–1435.

    Article  Google Scholar 

  70. Pehlemann FW, Sievers J, Berry M. Meningeal cells are involved in foliation, lamination, and neurogenesis of the cerebellum: evidence from 6-hydroxydopamine induced destruction of meningeal cells. Dev Biol 1985; 110:136–146.

    Article  PubMed  CAS  Google Scholar 

  71. Krueger S, Sievers J, Hansen C et al. Three morphologically distinct types of interface develop between adult host and fetal brain transplants: implications for scar formation in the adult central nervous system. J Comp Neurol 1986; 249:103–116.

    Article  Google Scholar 

  72. Sievers J, Pehlemann FW, Gude S et al. Meningeal cells organize the superficial glia limitans of the cerebellum and produce components of both the interstitial matrix and the basement membrane. J Neurocytol 1994; 23:135–149.

    Article  PubMed  CAS  Google Scholar 

  73. Mathewson AJ, Berry M. Observations on the astrocyte response to a cerebral stab wound in adult rats. Brain Res 1985; 327:61–69.

    Article  PubMed  CAS  Google Scholar 

  74. Stichel CC, Muller HW. The CNS lesion scar: new vistas on an old regeneration barrier. Cell Tissue Res 1998; 294(1):1–9.

    Article  PubMed  CAS  Google Scholar 

  75. Stichel CC, Muller HW. Relationship between injury-induced astrogliosis, laminin expression and axonal sprouting in the adult-rat brain. J Neurocytol 1994; 23:615–630.

    Article  PubMed  CAS  Google Scholar 

  76. Beattie MS, Bresnahan JC, Komon J et al. Endogenous repair after spinal cord contusion injuries in the rat. Exp Neurol 1997; 148(2):453–463.

    Article  PubMed  CAS  Google Scholar 

  77. Stichel CC, Hermanns S, Luhmann HJ et al. Inhibition of collagen IV deposition promotes regeneration of injured CNS axons. Eur J Neurosci 1999; 11(2):632–646.

    Article  PubMed  CAS  Google Scholar 

  78. Stichel CC, Niermann H, D’Urso D et al. Basal membrane-depleted scar in lesioned CNS: characteristics and relationships with regenerating axons. Neuroscience 1999; 93(1):321–333.

    Article  PubMed  CAS  Google Scholar 

  79. Shearer MC, Niclou SP, Brown D et al. The astrocyte/meningeal cell interface is a barrier to neurtie outgrowth which can be overcome by manipulation of inhibitory molecules or axonal signalling pathways. Mol Cell Neurosci 2003; 24:913–925.

    Article  PubMed  CAS  Google Scholar 

  80. Shearer MC, Fawcett JW. The astrocyte/meningeal cell interface: A barrier to successful nerve regeneration? Cell Tiss Res 2001; 305:267–273.

    Article  CAS  Google Scholar 

  81. McKerracher L. Spinal cord repair: strategies to promote axon regeneration. Neurobiol Dis 2001; 8(1):11–18.

    Article  PubMed  CAS  Google Scholar 

  82. Lehmann M, Fournier A, Selles-Navarro I et al. Inactivation of Rho signaling pathway promotes CNS axon regeneration. J Neurosci 1999; 19(17):7537–7547.

    PubMed  CAS  Google Scholar 

  83. Ramer MS, Duraisingam I, Priestley JV et al. Two-Tiered Inhibition of Axon Regeneration at the Dorsal Root Entry Zone. J Neurosci 2001; 21(8):2651–2660.

    PubMed  CAS  Google Scholar 

  84. Ramer MS, Priestley JV, McMahon SB. Functional regeneration of sensory axons into the adult spinal cord. Nature 2000; 403:312–316.

    Article  PubMed  CAS  Google Scholar 

  85. Romero MI, Rangappa N, Garry MG et al. Functional regeneration of chronically injured sensory afferents into adult spinal cord after neurotrophin gene therapy. J Neurosci 2001; 21(21):8408–8416.

    PubMed  CAS  Google Scholar 

  86. Romero MI, Rangappa N, Li L et al. Extensive sprouting of sensory afferents and hyperalgesia induced by conditional expression of nerve growth factor in the adult spinal cord. Journal Of Neuroscience 2000; 20(12):4435–4445.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Eurekah.com and Kluwer Academic / Plenum Publishers

About this chapter

Cite this chapter

Fawcett, J.W. (2006). The Glial Response to Injury and Its Role in the Inhibition of CNS Repair. In: Bähr, M. (eds) Brain Repair. Advances in Experimental Medicine and Biology, vol 557. Springer, Boston, MA. https://doi.org/10.1007/0-387-30128-3_2

Download citation

Publish with us

Policies and ethics