Skip to main content

Branching in Fungal Hyphae and Fungal Tissues

Growing Mycelia in a Desktop Computer

  • Chapter
Branching Morphogenesis

Part of the book series: Molecular Biology Intelligence Unit ((MBIU))

Abstract

In mycelial fungi the formation of hyphal branches is the only way in which the number of growing points can be increased. Cross walls always form at right angles to the long axis of a hypha, and nuclear division is not necessarily linked to cell division. Consequently, no matter how many nuclear divisions occur and no matter how many cross walls are formed, there will be no increase in the number of hyphal tips unless a branch arises. Evidently, for the fungi, hyphal branch formation is the equivalent of cell division in animals, plants and protists. The position of origin of a branch and its direction and rate of growth are the crucial formative events in the development of fungal tissues and organs. Kinetic analyses have shown that fungal filamentous growth can be interpreted on the basis of a regular cell cycle, and encourage the view that a mathematical description of fungal growth might be generalised into predictive simulations of tissue formation. An important point to emphasise is that all kinetic analyses published to date deal exclusively with physical influences on growth and branching kinetics (like temperature, nutrients, etc.). In this chapter we extrapolate from the kinetics so derived to deduce how the biological control events might affect the growth vector of the hyphal apex to produce the patterns of growth and branching that characterise fungal tissues and organs. This chapter presents: (i) a review of the published mathematical models that attempt to describe fungal growth and branching; (ii) a review of the cell biology of fungal growth and branching, particularly as it relates to the construction of fungal tissues; and (iii) a section in which simulated growth patterns are developed as interactive three-dimensional computer visualisations in what we call the Neighbour-Sensing model of hyphal growth. Experiments with this computer model demonstrate that geometrical form of the mycelium emerges as a consequence of the operation of specific locally-effective hyphal tip interactions. It is not necessary to impose complex spatial controls over development of the mycelium to achieve particular morphologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams HL, Thomas CR. The use of image analysis for morphological measurements on filamentous organisms. Biotechnol Bioeng 1988;32:707–712.

    Article  PubMed  CAS  Google Scholar 

  2. Money NP. The pulse of the machine-reevaluating tip-growth methodology. New Phytologist 2001;151:553–555.

    Article  Google Scholar 

  3. Jackson SL. Do hyphae pulse as they grow? New Phytologist 2001;151:556–560.

    Article  Google Scholar 

  4. Hammad F, Watling R, Moore D. Artifacts in video measurements cause growth curves to advance in steps. J Microbiol Meth 1993;18:113–117.

    Article  Google Scholar 

  5. Acuña G, Giral R, Agosin E et al. A neural network estimator for total biomass of filamentous fungi growing on two dimensional solid substrate. Biotech Tech 1998;17(7):515–519.

    Article  Google Scholar 

  6. Desgranges C, Vergoignan C, Georges M et al. Biomass estimation in solid state fermentation. I. Manual biochemical methods. Appl Microbiol Biotechnol 1991;35(2):200–205.

    CAS  Google Scholar 

  7. Desgranges C, Vergoignan C, Georges M et al. Biomass estimation in solid state fermentation. II. On-line measurements. Appl Microbiol Biotechnol 1991;35(2):206–209.

    CAS  Google Scholar 

  8. Katz D, Goldstein D, Rosenberger RF. Model for branch initiation in Aspergillus nidulans based on measurement of growth parameters. J Bacteriology 1972;109:1097–1100.

    CAS  Google Scholar 

  9. Trinci APJ. A study of the kinetics of hyphal extension and branch initiation of fungal mycelia. J Gen Microbiol 1974;81:225–236.

    PubMed  CAS  Google Scholar 

  10. Steele GC, Trinci APJ. The extension zone of mycelial hyphae. New Phytologist 1975;75:583–587.

    Article  Google Scholar 

  11. Pirt SJ. A kinetic study of the mode of growth surface colonies of bacteria and fungi. J Gen Microbiol 1967;47:181–197.

    PubMed  CAS  Google Scholar 

  12. Trinci APJ. Influence of the peripheral growth zone on the radial growth rate of fungal colonies. J Gen Microbiol 1971;67:325–344.

    Google Scholar 

  13. Prosser JI, Trinci APJ. A model for hyphal growth and branching. J Gen Microbiol 1979;111:153–164.

    PubMed  CAS  Google Scholar 

  14. Bartnicki-Garcia S. Fundamental aspects of hyphal morphogenesis. Symposia of the Society of General Microbiology 1973;23:245–267.

    Google Scholar 

  15. Trinci APJ. The duplication cycle and branching in fungi. In: Burnett JH, Trinci APJ, eds. Fungal Walls and Hyphal Growth. Cambridge, UK: Cambridge University Press; 1979:319–358.

    Google Scholar 

  16. Yang H, King R, Reichl U et al. Mathematical model for apical growth, septation, and branching of mycelial microorganisms. Biotechnol Bioeng 1992;39:49–58.

    Article  PubMed  CAS  Google Scholar 

  17. Leopold LB. Trees and streams: The efficiency of branching patterns. J Theor Biol 1971;31:339–354.

    Article  PubMed  CAS  Google Scholar 

  18. Horton RE. Erosional development of streams and their drainage basins: Hydrophysical approach to quantitative morphometry. Bull Geographical Soc Amer 1945;56:275–370.

    Article  Google Scholar 

  19. Gull K. Mycelium branch patterns of Thamnidium elegans. Transactions of the British Mycological Society 1975;64:321–324.

    Google Scholar 

  20. Obert M, Pfeifer P, Sernetz M. Microbial growth patterns described by fractal geometry. J Bacteriol 1990;172:1180–1185.

    PubMed  CAS  Google Scholar 

  21. Ritz K, Crawford J. Quantification of the fractal nature of colonies of Trichoderma viride. Mycol Res 1990;94:1138–1152.

    Google Scholar 

  22. Jones CL, Lonergan GT, Mainwaring DE. A rapid method for the fractal analysis of fungal colony growth using image processing. Binary 1993;5:171–180.

    Google Scholar 

  23. Matsuura S, Miyazima S. Colony of the fungus Aspergillus oryzae and self-affine fractal geometry of growth fronts. Fractals 1993;1:11–19.

    Article  Google Scholar 

  24. Cohen D. Computer simulation of biological pattern generation processes. Nature 1967;216:246–248.

    Article  Google Scholar 

  25. Hutchinson SA, Sharma P, Clarke KR et al. Control of hyphal orientation in colonies of Mucor hiemalis. Transactions of the British Mycological Society 1980;75:177–191.

    Google Scholar 

  26. Robinson PM. Chemotropism in fungi. Transactions of the British Mycological Society 1973;61:303–313.

    Article  Google Scholar 

  27. Robinson PM. Autotropism in fungal spores and hyphae. Botanical Rev 1973;39:367–384.

    Article  Google Scholar 

  28. Trinci APJ, Saunders PT, Gosrani R et al. Spiral growth of mycelial and reproductive hyphae. Transactions of the British Mycological Society 1979;73:283–292.

    Google Scholar 

  29. Indermitte C, Liebling TM, Clémençon H. Culture analysis and external interaction models of mycelial growth. Bull Mathematical Biol 1994;56(4):633–664.

    CAS  Google Scholar 

  30. Edelstein L. The propagation of fungal colonies: A model for tissue growth. J Theor Biol 1982;98:679–701.

    Article  Google Scholar 

  31. Ferret E, Siméon JH, Molin P et al. Macroscopic growth of filamentous fungi on solid substrate explained by a microscopic approach. Biotechnol Bioeng 1999;65(5):512–522.

    Article  PubMed  CAS  Google Scholar 

  32. Koch KL. The kinetics of mycelial growth. J General Microbiol 1975;89:209–216.

    CAS  Google Scholar 

  33. Monod J. The growth of bacterial cultures. Ann Rev Microbiol 1949;3:371–394.

    Article  CAS  Google Scholar 

  34. Edelstein L, Segel LA. Growth and metabolism in mycelial fungi. J Theor Biol 1982;104:187–210.

    Article  Google Scholar 

  35. Mitchell DA, Do DD, Greenfield PF. A semimechanistic mathematical model for growth of Rhizopus oligosporus in a model solid-state fermentation system. Biotechnol Bioeng 1991;38(4):353–362.

    Article  CAS  PubMed  Google Scholar 

  36. Bartnicki-Garcia S, Hergert F, Gierz G. Computer simulation of fungal morphogenesis and the mathematical basis of hyphal (tip) growth. Protoplasma 1989;153:46–57.

    Article  Google Scholar 

  37. Gierz G, Bartnicki-Garcia S. A three-dimensional model of fungal morphogenesis based on the vesicle supply center concept. J Theor Biol 2001;208(2):151–164.

    Article  PubMed  CAS  Google Scholar 

  38. Trinci APJ. Regulation of hyphal branching and hyphal orientation. In: Jennings DH, Rayner ADM, eds. Ecology and Physiology of the Fungal Mycelium. Cambridge, UK: Cambridge University Press; 1984:23–52.

    Google Scholar 

  39. Trinci APJ, Wiebe MG, Robson GD. The mycelium as an integrated entity. In: Wessels JGH, Meinhardt F, eds. Growth, Differentiation and Sexuality. (The Mycota, vol. 1). Berlin, Heidelberg: Springer-Verlag; 1994:175–193.

    Google Scholar 

  40. Moore D. Tissue Formation. In: Gow NAR, Gadd GM, eds. The Growing Fungus. London: Chapman and Hall; 1994:423–465.

    Google Scholar 

  41. Chiu SW, Moore D. Patterns in Fungal Development. Cambridge, U.K.: Cambridge University Press; 1996.

    Google Scholar 

  42. Moore D. Fungal Morphogenesis. New York: Cambridge University Press; 1998.

    Google Scholar 

  43. Fries N. Untersuchungen über Sporenkeimung und Mycelentwicklung bodenbewohneneder Hymenomyceten. Symbolae Botanicae Upsaliensis 1943;6(4):633–664.

    Google Scholar 

  44. Kotov V, Reshetnikov SV. A stochastic model for early mycelial growth. Mycol Res 1990;94:577–586.

    Article  Google Scholar 

  45. Hogeweg P, Hesper B. A model study on biomorphological description. Pattern Recognition 1974;6:165–179.

    Article  Google Scholar 

  46. Witten IH, Frank E. Data Mining: Practical Machine Learning Tools and Techniques with Java Implementations. San Francisco: Morgan Kaufmann Publishers; 1999.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Eurekah.com and Springer Science+Business Media

About this chapter

Cite this chapter

Moore, D., McNulty, L.J., Meskauskas, A. (2005). Branching in Fungal Hyphae and Fungal Tissues. In: Branching Morphogenesis. Molecular Biology Intelligence Unit. Springer, Boston, MA. https://doi.org/10.1007/0-387-30873-3_4

Download citation

Publish with us

Policies and ethics