Skip to main content

Image Compression

  • Chapter
PACS

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bae KT, Whiting BR. CT data storage reduction by means of compressing projection data instead of images: feasibility study. Radiology. 2001;219(3):850–855.

    CAS  PubMed  Google Scholar 

  • Brennecke R, et al. American College of Cardiology/European Society of Cardiology international study of angiographic data compression phase III. Measurement of image quality differences at varying levels of data compression. Eur Heart J. 2000;21(8):687–696.

    Article  CAS  PubMed  Google Scholar 

  • Chan H, et al. Image compression in digital mammography: effects on computerized detection of subtle microcalcifications. Med Phys. 1996;23(8):1325–1336.

    Article  CAS  PubMed  Google Scholar 

  • Good W, Maitz G, Gur D. Joint photographic experts group (JPEG) compatible data compression of mammograms. J Digit Imaging. 1994;7(3):123–132.

    CAS  PubMed  Google Scholar 

  • Erickson BJ, et al. Requirements for an enterprise digital image archive. J Digit Imaging. 2001;14(2):72–82.

    Article  CAS  PubMed  Google Scholar 

  • Hangiandreou NJ, et al. The effects of irreversible JPEG compression on an automated algorithm for measuring carotid artery intima-media thickness from ultrasound images. J Digit Imaging. 2002;15(suppl 1):258–260.

    PubMed  Google Scholar 

  • Huang H. Progress in image processing technology related to radiological sciences: a five-year review. Comput Methods Programs Biomed. 1987;25(2):143–156.

    Article  CAS  PubMed  Google Scholar 

  • Kerensky RA, et al. American College of Cardiology/European Society of Cardiology international study of angiographic data compression phase I. The effects of lossy data compression on recognition of diagnostic features in digital coronary angiography. Eur Heart J. 2000;21(8):668–678.

    Article  CAS  PubMed  Google Scholar 

  • Ko JP, et al. Wavelet compression of low-dose chest CT data: effect on lung nodule detection. Radiology. 2003;228(1):70–75.

    PubMed  Google Scholar 

  • Kotter E, et al. Evaluation of lossy data compression of chest X-rays: a receiver operating characteristic study. Invest Radiol. 2003;38(5):243–249.

    Article  PubMed  Google Scholar 

  • Li F, et al. Effects of JPEG and wavelet compression of spiral low-dose CT images on detection of small lung cancers. Acta Radiol. 2001;42(2):156–160.

    CAS  PubMed  Google Scholar 

  • Manduca A, et al. Histogram transformation for improved compression of CT images. In Medical Imaging 1997. Newport Beach, CA: SPIE; 1997.

    Google Scholar 

  • Manduca A, et al. 3-D compression of medical images with Set Partitioning in Hierarchical Trees. In RSNA. Chicago: RSNA; 1997.

    Google Scholar 

  • Megibow AJ, et al. Computed tomography diagnosis utilizing compressed image data: an ROC analysis using acute appendicitis as a model. J Digit Imaging. 2002;15(2):84–90.

    Article  PubMed  Google Scholar 

  • Ohgiya Y, et al. Acute cerebral infarction: effect of JPEG compression on detection at CT. Radiology. 2003;227(1):124–127.

    PubMed  Google Scholar 

  • Persons KR, et al. Evaluation of irreversible JPEG compression for a clinical ultrasound practice. J Digit Imaging. 2002;15(1):15–21.

    Article  PubMed  Google Scholar 

  • Ritenour ER. Lossy compression should not be used in certain imaging applications such as chest radiography. For the proposition. Med Phys. 1999;26(9):1773–1774.

    Article  CAS  PubMed  Google Scholar 

  • Said A, Pearlman W. A new fast and efficient codec based on set partitioning in hierarchical trees. IEEE Trans Trans Circuits and Systems for Video Technology. 1996;6:243–250.

    Google Scholar 

  • Savcenko V, et al. Detection of subtle abnormalities on chest radiographs after irreversible compression. Radiology. 1998;206(3):609–616.

    CAS  PubMed  Google Scholar 

  • Siddiqui K, et al. Improved image compression at various slice thicknesses for multislice CT using 3-D JPEG2000 (part 2) in comparison with conventional 2-D compression. In Soc Computer Applications in Radiology. Vancouver, BC: SCAR; 2004.

    Google Scholar 

  • Slone RM, Muka E, Pilgram TK. Irreversible JPEG compression of digital chest radiographs for primary interpretation: assessment of visually lossless threshold. Radiology. 2003;228(2):425–429.

    PubMed  Google Scholar 

  • Sung MM, et al. Clinical evaluation of compression ratios using JPEG2000 on computed radiography chest images. J Digit Imaging. 2002;15(2):78–83.

    Article  PubMed  Google Scholar 

  • Suryanarayanan S, et al. A perceptual evaluation of JPEG 2000 image compression for digital mammography: contrast-detail characteristics. J Digit Imaging. 2004;17(1):64–70.

    Article  PubMed  Google Scholar 

  • Tuinenburg JC, et al. American College of Cardiology/European Society of Cardiology international study of angiographic data compression phase II. The effects of varying JPEG data compression levels on the quantitative assessment of the degree of stenosis in digital coronary angiography. Eur Heart J. 2000;21(8):679–686.

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto S, et al. Evaluation of compressed lung CT image quality using quantitative analysis. Radiat Med. 2001;19(6):321–329.

    CAS  PubMed  Google Scholar 

  • Zhang Y, Pham B, Eckstein M. Automated optimization of JPEG 2000 encoder options based on model observer performance for detecting variable signals in X-ray coronary angiograms. IEEE Trans Med Imaging. 2004;23(4):459–474.

    Article  PubMed  Google Scholar 

  • Zheng B, et al. Applying computer-assisted detection schemes to digitized mammograms after JPEG data compression: an assessment. Acad Radiol. 2000;7(8):595–602.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Erickson, B.J. (2006). Image Compression. In: Dreyer, K.J., Thrall, J.H., Hirschorn, D.S., Mehta, A. (eds) PACS. Springer, New York, NY. https://doi.org/10.1007/0-387-31070-3_12

Download citation

  • DOI: https://doi.org/10.1007/0-387-31070-3_12

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-26010-5

  • Online ISBN: 978-0-387-31070-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics