Skip to main content
  • 3769 Accesses

Abstract

Optical fibers are one of the most commonly used light transmitting media in optoelectronic systems for telecommunication applications. Because the core diameter of optical fibers is very small, active alignment methods are usually employed for the coupling between optical fibers and other optoelectronic devices. In general, the equipment cost of active alignment is very high and the processing time is relatively long, especially for fiber array alignment. Therefore, the conventional fiber alignment process becomes rather expensive and the throughput is quite low. In recent years, passive alignment using low cost epoxy adhesives and precisely etched V-grooves on silicon optical benches is attracting more attention due to its reduced production cost and short processing time. During the passive alignment process, the optical fiber may be lifted up by the buoyancy of epoxy flow and, hence, an extra cover plate is required to press the fiber against the walls of the V-groove. An effort is made to develop a modified passive alignment method without using the cover plate. Several parameters may affect the yield and need to be optimized. It is found that the amount of epoxy dispensed to the V-groove is critical in the process. Also the viscosity of the epoxy determines the characteristics of the flow in the V-groove and, hence, affects the results of passive alignment. In this chapter, the design and configuration of the modified passive alignment method will be introduced. The effect of the volume and viscosity of epoxy will be presented. The application to multiple fiber alignment will be demonstrated. The newly developed passive alignment method is capable of aligning an array of 8 fibers up to 1 micron accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 429.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 549.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M.F. Dautartas, J. Fisher, H. Luo, P. Datta, and A. Jeantilus, Hybrid optical packaging, challenges and opportunities, Proc. 52nd ECTC, San Diego, CA, May 2002, pp. 787–793.

    Google Scholar 

  2. M.W. Beranek, et al., Passive alignment optical sub-assemblies for military/aerospace fiber-optic transmitter/ receiver modules, IEEE Transactions on Advanced Packaging, 23(Aug.), pp.461–469 (2000).

    Article  Google Scholar 

  3. G. Keiser, Optical Fiber Communications, McGraw-Hill, New York, 2000.

    Google Scholar 

  4. D.K. Mynbaev and L.L. Scheiner, Fiber-Optic Communications Technology, Prentice Hall, New Jersey, 2001.

    Google Scholar 

  5. R.R. Tummala, Fundamentals of Microsystems Packaging, McGraw-Hill, New York, 2001.

    Google Scholar 

  6. F.G. Smith and T.A. King, Optics and Photonics, John Wiley & Sons, Chichester, 2000.

    Google Scholar 

  7. J.A. Buck, Fundamentals of Optical Fibers, John Wiley & Sons, Chichester, 1995.

    Google Scholar 

  8. P. Karioja, et al., Comparison of active and passive fiber alignment techniques for multimode laser pigtailing, Proc. 50th ECTC, Las Vegas, ND, May 2000, pp. 244–248.

    Google Scholar 

  9. S.H. Law, T.N. Phan, and L. Poladian, Fibre geometry and pigtailing, Proc. 51st ECTC, Orlando, FL, May 2001, pp. 1447–1450.

    Google Scholar 

  10. K. Ishikawa, An integrated micro-optical system for laser-to-fiber active alignment, Proc. IEEE 15th MEMS, Jan. 2002, pp. 491–494.

    Google Scholar 

  11. J. Goodrich, A silicon optical bench approach to low cost high speed transceivers, Proc. 51st ECTC, Orlando, FL, May 2001, pp. 238–241.

    Google Scholar 

  12. R. Hauffe, U. Siebel, K. Petermann, R. Moosburger, J.-R. Kroop, and F. Arndt, Methods for passive fiber chip coupling of integrated optical devices, IEEE Transactions on Advanced Packaging, 24(Nov.), pp. 450–455 (2001).

    Article  Google Scholar 

  13. R.A. Boudreau, Passive alignment in optoelectronic packaging, Optical Fiber Communication, OFC 97, Feb. 1997, pp. 109–110.

    Google Scholar 

  14. S.J. Park, et al., A novel method for fabrication of a PLC platform for hybrid integration of an optical module by passive alignment, IEEE Phton. Technol. Lett., 14(Apr.), pp. 486–488 (2002).

    Article  Google Scholar 

  15. H. Mori, et al., LD and PD array modules assembled in a new plastic package with auto-alignment projections for silicon optical bench, Pro. OFC/IOOC, 3(Feb.), pp. 198–200 (1999).

    Google Scholar 

  16. G. Grand and C. Artigue, Hybridization of optoelectronic components on silicon substrate, Proc. ECOC’94, 1994, pp. 193–200.

    Google Scholar 

  17. R. Moosburger, B. Schüppert, U. Fischer, and K. Petermann, Passive alignment technique for all-silicon integrated optics, Proc. Integr. Photon. Res., Boston, MA, IWH3, Apr. 1996, pp. 565–568.

    Google Scholar 

  18. R. Moosburger, R. Hauffe, U. Siebel, D. Arndt, J. Kropp, and K. Petermann, Passive alignment of single mode fibers to integrated polymer waveguide structures utilizing a single mask process, IEEE Photon. Technol. Lett., 11, pp. 848–850 (1999).

    Article  Google Scholar 

  19. M.W. Beranek, et al., Passive alignment optical sub-assemblies for military/aerospace fiber-optic transmitter/receiver modules, IEEE Trans. Advanced Packaging, 23(Aug.), pp. 461–469 (2000).

    Article  Google Scholar 

  20. M.F. Grant, et al., Self-aligned multiple fibre coupling for silica-on-silicon integrated optics, Proc. 9th Annual European Fibre Optic Conference, London, UK, Jun. 1991, pp. 269–272.

    Google Scholar 

  21. J.W. Osenbach, et al., Low cost/high volume laser modules using silicon optical bench technology, Proc. IEEE 48th ECTC, May 1998, pp. 581–587.

    Google Scholar 

  22. K. Kurata, et al., A surface mount single-mode laser module using passive alignment, IEEE Transactions on Components, Packaging, and Manufacturing Technology, 19(3), pp. 524–531 (1996).

    Article  Google Scholar 

  23. K. Yamauchi, et al., Automated mass production line for optical module using passive alignment technique, Proc. 50th ECTC, Las Vegas, ND, May 2000, pp. 15–20.

    Google Scholar 

  24. C.B. Probst, A. Bjarklev, and S.B. Andreasen, Experimental verification of microbending theory using mode coupling to discrete cladding modes, 7(Jan.), pp. 55–61 (1989).

    Google Scholar 

  25. C. Unger and W. Stocklein, Investigation of the microbending sensitivity of fibers, Journal of Lightwave Theory, 12(Apr.), pp. 591–596 (1994).

    Article  Google Scholar 

  26. J.C.C. Lo and S.W.R. Lee, Experimental assessment of passive alignment of optical fibers with V-groove on silicon optical bench, Proc. 6th EPTC, Singapore, December 2004, pp. 375–380.

    Google Scholar 

  27. J. Lo, R. Lee, S. Lee, J.S. Wu, and M. Yuen, Modified passive alignment of optical fibers with low viscosity epoxy flow running in V-grooves, Proc. IEEE 54th ECTC, Jun. 2004, pp. 830–834.

    Google Scholar 

  28. J. Lo, C.S. Yung, R. Lee, S. Lee, J.S. Wu, and M. Yuen, Passive alignment of optical fiber in V-groove with low viscosity epoxy flow, Proc. ASME IMECE, Nov. 2003, paper IMECE 2003/43902.

    Google Scholar 

  29. K.E. Bean, Anisotropic etching of silicon, IEEE Trans Electron Devices, ED-25, pp. 1185–1193 (1978).

    Google Scholar 

  30. C.W. Chang and W.F. Hsieh, Micromachined double-side 45° silicon reflectors for dual-wavelength DVD optical pickup heads, Proc. IEEE 54th ECTC, Jun. 2004, pp. 1390–1395.

    Google Scholar 

  31. C. Strandman, et al., Fabrication of 45° mirrors together with well-defined v-grooves using wet anisotropic etching of silicon, Journal of Microelectromechanical System, 4(Dec.), pp. 213–219 (1995).

    Article  Google Scholar 

  32. S.A. Campbell and H.J. Lewerenz, Semiconductor Micromaching Volume 1 Fundamental Electrochemistry and Physics, John Wiley & Sons, Chichester, 1998.

    Google Scholar 

  33. S.A. Campbell and H.J. Lewerenz, Semiconductor Micromaching, Volume 2, Techniques and Industrial Applications, John Wiley & Sons, Chichester, 1998.

    Google Scholar 

  34. E. Bassous, Fabrication of novel three-dimensional microstructures by the anisotropic etching of (100) and (110) silicon, IEEE Trans Electron Devices, ED-25, pp. 1178–1185 (1978).

    Google Scholar 

  35. M. Sekimura, Anisotropic etching of surfactant-added TMAH solution, Proc. IEEE 12th MEMS, Jan. 1999, pp. 650–655.

    Google Scholar 

  36. W. Sonphao and S. Chaisirikul, Silicon anisotropic etching of TMAH solution, Proc. IEEE ISIE, Jun. 2001, pp. 2049–2052.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Ricky Lee, S.W., Lo, C.C. (2007). Passive Alignment of Optical Fibers in V-grooves with Low Viscosity Epoxy Flow. In: Suhir, E., Lee, Y.C., Wong, C.P. (eds) Micro- and Opto-Electronic Materials and Structures: Physics, Mechanics, Design, Reliability, Packaging. Springer, Boston, MA. https://doi.org/10.1007/0-387-32989-7_26

Download citation

  • DOI: https://doi.org/10.1007/0-387-32989-7_26

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-27974-9

  • Online ISBN: 978-0-387-32989-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics