Skip to main content

NF-κB in Neurons

Behavioral and Physiologic Roles in Nervous System Function

  • Chapter
NF-κB/Rel Transcription Factor Family

Summary

The neuronal NF-κB signaling system represents a novel and potentially vital component involved in linking activity at the synapse to activity within the nucleus. NF-κB was the first transcription factor to be localized to the synapse. Since its initial characterization in the nervous system, NF-κB has been shown to be regulated by a variety of stimuli, suggesting that it may play a role in integration of numerous different types of information within the nervous system. Ample evidence exists demonstrating that NF-κB factors are engaged in and are necessary for formation of synaptic plasticity and long-term memory. Even though we are only beginning to understand the contribution of distinct NF-κB family members to the regulation of gene transcription in the brain, all of the evidence collected thus far indicates that NF-κB may represent a vital part of the molecular machinery involved in mammalian cognition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Schmitt RO, Dev P, Smith BH. Electrotonic processing of information by brain cells. Science 1976; 193(4248):114–120.

    Article  PubMed  CAS  Google Scholar 

  2. Korner M, Rattner A, Mauxion F et al. A brain-specific transcription activator. Neuron 1989; 3(5):563–572.

    Article  PubMed  CAS  Google Scholar 

  3. Meberg PJ, Kinney WR, Valcourt EG et al. Gene expression of the transcription factor NF-kappa B in hippocampus: Regulation by synaptic activity. Brain Res Mol Brain Res 1996; 38(2):179–190.

    Article  PubMed  CAS  Google Scholar 

  4. Kaltschmidt C, Kaltschmidt B, Baeuerle PA. Brain synapses contain inducible forms of the transcription factor NF-kappa B. Mech Dev 1993; 43(2–3):135–147.

    Article  PubMed  CAS  Google Scholar 

  5. Meffert MK, Chang JM, Wiltgen BJ et al. NF-kappa B functions in synaptic signaling and behavior. Nat Neurosci 2003; 6(10):1072–1078.

    Article  PubMed  CAS  Google Scholar 

  6. O’Neill LA, Kaltschmidt C. NF-kappa B: A crucial transcription factor for glial and neuronal cell function. Trends Neurosci 1997; 20(6):252–258.

    Article  PubMed  CAS  Google Scholar 

  7. Zandi E, Rothwarf DM, Delhase M et al. The IkappaB kinase complex (IKK) contains two kinase subunits, IKKalpha and IKKbeta, necessary for IkappaB phosphorylation and NF-kappaB activetion. Cell 1997; 91(2):243–252.

    Article  PubMed  CAS  Google Scholar 

  8. Yamaoka S, Courtois G, Bessia C et al. Complementation cloning of NEMO, a component of the IkappaB kinase complex essential for NF-kappaB activation. Cell 1998; 93(7):1231–1240.

    Article  PubMed  CAS  Google Scholar 

  9. Rothwarf DM, Zandi E, Natoli G et al. IKK-gamma is an essential regulatory subunit of the IkappaB kinase complex. Nature 1998; 395(6699):297–300.

    Article  PubMed  CAS  Google Scholar 

  10. Hu MC, Wang Y. IkappaB kinase-alpha and-beta genes are coexpressed in adult and embryonic tissues but localized to different human chromosomes. Gene 1998; 222(1):31–40.

    Article  PubMed  CAS  Google Scholar 

  11. Hu MC, Wang Y, Qiu WR et al. Hematopoietic progenitor kinase-1 (HPK1) stress response signaling pathway activates IkappaB kinases (IKK-alpha/beta) and IKK-beta is a developmentally regulated protein kinase. Oncogene 1999; 18(40):5514–5524.

    Article  PubMed  CAS  Google Scholar 

  12. Kaltschmidt C, Kaltschmidt B, Neumann H et al. Constitutive NF-kappa B activity in neurons. Mol Cell Biol 1994; l4(6):3981–3992.

    Google Scholar 

  13. Rattner A, Korner M, Walker MD et al. NF-kappa B activates the HIV promoter in neurons. EMBO J 1993; 12(11):4261–4267.

    PubMed  CAS  Google Scholar 

  14. Guerrini L, Blasi F, Denis-Donini S. Synaptic activation of NF-kappa B by glutamate in cerebellar granule neurons in vitro. Proc Nad Acad Sci USA 1995; 92(20):9077–9081.

    Article  CAS  Google Scholar 

  15. Scholzke MN, Potrovita I, Subramaniam S et al. Glutamate activates NF-kappaB through calpain in neurons. Eur J Neurosci 2003; 18(12):3305–3310.

    Article  PubMed  Google Scholar 

  16. Cruise L, Ho LK, Veitch K et al. Kainate receptors activate NF-kappaB via MAP kinase in striatal neurones. Neuroreport 2000; 11(2):395–398.

    Article  PubMed  CAS  Google Scholar 

  17. Kaltschmidt C, Kaltschmidt B, Baeuerle PA. Stimulation of ionotropic glutamate receptors activates transcription factor NF-kappa B in primary neurons. Proc Natl Acad Sci USA 1995; 92(21):9618–9622.

    Article  PubMed  CAS  Google Scholar 

  18. Pizzi M, Goffi F, Boroni F et al. Opposing roles for NF-kappa B/Rel factors p65 and c-Rel in the modulation of neuron survival elicited by glutamate and interleukin-lbeta. J Biol Chem 2002; 277(23):20717–20723.

    Article  PubMed  CAS  Google Scholar 

  19. Wellmann H, Kaltschmidt B, Kaltschmidt C. Retrograde transport of transcription factor NF-kappa B in living neurons. J Biol Chem 2001; 276(15):11821–11829.

    Article  PubMed  CAS  Google Scholar 

  20. Schmitz ML, Bacher S, Kracht M. I kappa B-independent control of NF-kappa B activity by modulatory phosphorylations. Trends Biochem Sci 2001; 26(3):186–190.

    Article  PubMed  CAS  Google Scholar 

  21. Chen LF, Greene WC. Regulation of distinct biological activities of the NF-kappaB transcription factor complex by acetylation. J Mol Med 2003; 81(9):549–557.

    Article  PubMed  CAS  Google Scholar 

  22. Yeh SH, Lin CH, Gean PW. Acetylation of nuclear factor-kappaB in rat amygdala improves long-term but not short-term retention of fear memory. Mol Pharmacol 2004; 65(5):1286–1292.

    Article  PubMed  CAS  Google Scholar 

  23. Cogswell PC, Scheinman RI, Baldwin Jr AS. Promoter of the human NF-kappa B p50/p105 gene. Regulation by NF-kappa B subunits and by c-REL. J Immunol 1993; 150(7):2794–2804.

    PubMed  CAS  Google Scholar 

  24. Sun SC, Ganchi PA, Ballard DW et al. NF-kappa B controls expression of inhibitor I kappa B alpha: Evidence for an inducible autoregulatory pathway. Science 1993; 259(5103):1912–1915.

    Article  PubMed  CAS  Google Scholar 

  25. Sun SC, Ganchi PA, Beraud C et al. Autoregulation of the NF-kappa B transactivator RelA (p65) by multiple cytoplasmic inhibitors containing ankyrin motifs. Proc Natl Acad Sci USA 1994; 91(4):1346–1350.

    Article  PubMed  CAS  Google Scholar 

  26. Grilli M, Goffi F, Memo M et al. Interleukin-lbeta and glutamate activate the NF-kappaB/Rel binding site from the regulatory region of the amyloid precursor protein gene in primary neuronal cultures. J Biol Chem 1996; 271(25):15002–15007.

    Article  PubMed  CAS  Google Scholar 

  27. Furukawa K, Mattson MP. The transcription factor NF-kappaB mediates increases in calcium currents and decreases in NMDA-and AMPA/kainate-induced currents induced by tumor necrosis factor-alpha in hippocampal neurons. J Neurochem 1998; 70(5):1876–1886.

    Article  PubMed  CAS  Google Scholar 

  28. Wang Y, Qin ZH, Nakai M et al. Costimulation of cyclic-AMP-linked metabotropic glutamate receptors in rat striatum attenuates excitotoxin-induced nuclear factor-kappaB activation and apoptosis. Neuroscience 1999; 94(4):1153–1162.

    Article  PubMed  CAS  Google Scholar 

  29. Wood JN. Regulation of NF-kappa B activity in rat dorsal root ganglia and PC 12 cells by tumour necrosis factor and nerve growth factor. Neurosci Lett 1995; 192(1):41–44.

    Article  PubMed  CAS  Google Scholar 

  30. Carter BD, Kaltschmidt C, Kaltschmidt B et al. Selective activation of NF-kappa B by nerve growth factor through the neurotrophin receptor p75. Science 1996; 272(5261):542–545.

    Article  PubMed  CAS  Google Scholar 

  31. Hamanoue M, Middleton G, Wyatt S et al. p75-mediated NF-kappaB activation enhances the survival response of developing sensory neurons to nerve growth factor. Mol Cell Neurosci 1999; 14(1):28–40.

    Article  PubMed  CAS  Google Scholar 

  32. Gu Z, Toliver-Kinsky T, Glasgow J et al. NGF-mediated alteration of NF-kappaB binding activity after partial immunolesions to rat cholinergic basal forebrain neurons. Int J Dev Neurosci 2000; 18(4–5):455–468.

    Article  PubMed  CAS  Google Scholar 

  33. Bui NT, Livolsi A, Peyron JF et al. Activation of nuclear factor kappaB and Bcl-x survival gene expression by nerve growth factor requires tyrosine phosphorylation of IkappaBalpha. J Cell Biol 2001; 152(4):753–764.

    Article  PubMed  CAS  Google Scholar 

  34. Bui NT, Konig HG, Culmsee C et al. p75 neurotrophin receptor is required for constitutive and NGF-induced survival signalling in PC12 cells and rat hippocampal neurones. J Neurochem 2002; 81(3):594–605.

    Article  PubMed  CAS  Google Scholar 

  35. Culmsee C, Gerling N, Lehmann M et al. Nerve growth factor survival signaling in cultured hippocampal neurons is mediated through TrkA and requires the common neurotrophin receptor P75. Neuroscience 2002; 115(4):1089–1108.

    Article  PubMed  CAS  Google Scholar 

  36. Zelenaia O, Schlag BD, Gochenauer GE et al. Epidermal growth factor receptor agonists increase expression of glutamate transporter GLT-1 in astrocytes through pathways dependent on phosphatidylinositol 3-kinase and transcription factor NF-kappaB. Mol Pharmacol 2000; 57(4):667–678.

    PubMed  CAS  Google Scholar 

  37. Yabe T, Wilson D, Schwartz JP. NFkappaB activation is required for the neuroprotective effects of pigment epithelium-derived factor (PEDF) on cerebellar granule neurons. J Biol Chem 2001; 276(46):43313–43319.

    Article  PubMed  CAS  Google Scholar 

  38. Rodriguez-Kern A, Gegelashvili M, Schousboe A et al. Beta-amyloid and brain-derived neurotrophic factor, BDNF, up-regulate the expression of glutamate transporter GLT-1/EAAT2 via different signaling pathways utilizing transcription factor NF-kappaB. Neurochem Int 2003; 43(4–5):363–370.

    Article  PubMed  CAS  Google Scholar 

  39. Kaltschmidt B, Kaltschmidt C. DNA array analysis of the developing rat cerebellum: Transforming growth factor-beta2 inhibits constitutively activated NF-kappaB in granule neurons. Mech Dev 2001; 101(1–2):11–19.

    Article  PubMed  CAS  Google Scholar 

  40. Lilienbaum A, Israel A. From calcium to NF-kappa B signaling pathways in neurons. Mol Cell Biol 2003; 23(8):2680–2698.

    Article  PubMed  CAS  Google Scholar 

  41. Knapp LT, Klann E. Role of reactive oxygen species in hippocampal long-term potentiation: Contributory or inhibitory? J Neurosci Res 2002; 70(1):1–7.

    Article  PubMed  CAS  Google Scholar 

  42. Klann E, Roberson ED, Knapp LT et al. A role for superoxide in protein kinase C activation and induction of long-term potentiation. J Biol Chem 1998; 273(8):4516–4522.

    Article  PubMed  CAS  Google Scholar 

  43. Thiels E, Urban NN, Gonzalez-Burgos GR et al. Impairment of long-term potentiation and associative memory in mice that overexpress extracellular superoxide dismutase. J Neurosci 2000; 20(20):7631–7639.

    PubMed  CAS  Google Scholar 

  44. Gahtan E, Auerbach JM, Groner Y et al. Reversible impairment of long-term potentiation in transgenic Cu/Zn-SOD mice. Eur J Neurosci 1998; 10(2):538–544.

    Article  PubMed  CAS  Google Scholar 

  45. Levin ED, Brady TC, Hochrein EC et al. Molecular manipulations of extracellular superoxide dismutase: Functional importance for learning. Behav Genet 1998; 28(5):381–390.

    Article  PubMed  CAS  Google Scholar 

  46. Bindokas VP, Jordan J, Lee CC et al. Superoxide production in rat hippocampal neurons: Selective imaging with hydroethidine. J Neurosci 1996; 16(4):1324–1336.

    PubMed  CAS  Google Scholar 

  47. Sanz L, Diaz-Meco MT, Nakano H et al. The atypical PKC-interacting protein p62 channels NF-kappaB activation by the IL-1-TRAF6 pathway. EMBO J 2000; 19(7):1576–1586.

    Article  PubMed  CAS  Google Scholar 

  48. Sanz L, Sanchez P, Lallena MJ et al. The interaction of p62 with RIP links the atypical PKCs to NF-kappaB activation. EMBO J 1999; 18(11):3044–3053.

    Article  PubMed  CAS  Google Scholar 

  49. Macdonald NJ, Perez-Polo JR, Bennett AD et al. NGF-resistant PC12 cell death induced by arachidonic acid is accompanied by a decrease of active PKC zeta and nuclear factor kappa B. J Neurosci Res 1999; 57(2):219–226.

    Article  PubMed  CAS  Google Scholar 

  50. Esteve PO, Chicoine E, Robledo O et al. Protein kinase C-zeta regulates transcription of the matrix metalloproteinase-9 gene induced by IL-1 and TNF-alpha in glioma cells via NF-kappa B. J Biol Chem 2002; 277(38):35150–35155.

    Article  PubMed  CAS  Google Scholar 

  51. Baeuerle PA, Henkel T. Function and activation of NF-kappa B in the immune system. Annu Rev Immunol 1994; 12:141–179.

    PubMed  CAS  Google Scholar 

  52. Sippy BD, Hofman FM, Wright AD et al. Induction of intercellular adhesion molecule-1 by tumor necrosis factor-alpha through the 55-kDa receptor is dependent on protein kinase C in human retinal pigment epithelial cells. Invest Ophthalmol Vis Sci 1996; 37(4):597–606.

    PubMed  CAS  Google Scholar 

  53. Moghaddami N, Costabile M, Grover PK et al. Unique effect of arachidonic acid on human neutrophil TNF receptor expression: Up-regulation involving protein kinase C, extracellular signal-regulated kinase, and phospholipase A2. J Immunol 2003; 171(5):2616–2624.

    PubMed  CAS  Google Scholar 

  54. Adams JP, Sweatt JD. Molecular psychology: Roles for the ERK MAP kinase cascade in memory. Annu Rev Pharmacol Toxicol 2002; 42:135–163.

    Article  PubMed  CAS  Google Scholar 

  55. Roberson ED, English JD, Sweatt JD. A biochemist’s view of long-term potentiation. Learn Mem 1996; 3(1):1–24.

    PubMed  CAS  Google Scholar 

  56. Harris EW, Ganong AH, Cotman CW. Long-term potentiation in the hippocampus involves activation of N-methyl-D-aspartate receptors. Brain Res 1984; 323(1):132–137.

    Article  PubMed  CAS  Google Scholar 

  57. Morris RG, Anderson E, Lynch GS et al. Selective impairment of learning and blockade of long-term potentiation by an N-methyl-D-aspartate receptor antagonist, AP5. Nature 1986; 319(6056):774–776.

    Article  PubMed  CAS  Google Scholar 

  58. Desmond NL, Colbert CM, Zhang DX et al. NMDA receptor antagonists block the induction of long-term depression in the hippocampal dentate gyrus of the anesthetized rat. Brain Res 1991;552(1):93–98.

    Article  PubMed  CAS  Google Scholar 

  59. Lynch G, Browning M, Bennett WF. Biochemical and physiological studies of long-term synaptic plasticity. Fed Proc 1979; 38(7):2117–2122.

    PubMed  CAS  Google Scholar 

  60. Dunwiddie TV, Lynch G. The relationship between extracellular calcium concentrations and the induction of hippocampal long-term potentiation. Brain Res 1979; 169(1):103–110.

    Article  PubMed  CAS  Google Scholar 

  61. Matthies H, Reymann KG. Protein kinase A inhibitors prevent the maintenance of hippocampal long-term potentiation. Neuroreport 1993; 4(6):712–714.

    Article  PubMed  CAS  Google Scholar 

  62. Lovinger DM, Wong KL, Murakami K et al. Protein kinase C inhibitors eliminate hippocampal long-term potentiation. Brain Res 1987; 436(1):177–183.

    Article  PubMed  CAS  Google Scholar 

  63. Silva AJ, Stevens CF, Tonegawa S et al. Deficient hippocampal long-term potentiation in alpha-calcium-calmodulin kinase II mutant mice. Science 1992; 257(5067):201–206.

    Article  PubMed  CAS  Google Scholar 

  64. English JD, Sweatt JD. Activation of p42 mitogen-activated protein kinase in hippocampal long term potentiation. J Biol Chem 1996; 271(40):24329–24332.

    Article  PubMed  CAS  Google Scholar 

  65. English JD, Sweatt JD. A requirement for the mitogen-activated protein kinase cascade in hippocampal long term potentiation. J Biol Chem 1997; 272(31):19103–19106.

    Article  PubMed  CAS  Google Scholar 

  66. Funauchi M, Tsumoto T, Nishigori A et al. Long-term depression is induced in Ca2+/calmodulin kinase-inhibited visual cortex neurons. Neuroreport 1992; 3(2):173–176.

    Article  PubMed  CAS  Google Scholar 

  67. Crepel F, Krupa M. Activation of protein kinase C induces a long-term depression of glutamate sensitivity of cerebellar Purkinje cells. An in vitro study. Brain Res 1988; 458(2):397–401.

    Article  PubMed  CAS  Google Scholar 

  68. Norman ED, Thiels E, Barrionuevo G et al. Long-term depression in the hippocampus in vivo is associated with protein phosphatase-dependent alterations in extracellular signal-regulated kinase. J Neurochem 2000; 74(1):192–198.

    Article  PubMed  CAS  Google Scholar 

  69. Thiels E, Kanterewicz BI, Norman ED et al. Long-term depression in the adult hippocampus in vivo involves activation of extracellular signal-regulated kinase and phosphorylation of Elk-1. J Neurosci 2002; 22(6):2054–2062.

    PubMed  CAS  Google Scholar 

  70. Albensi BC, Mattson MP. Evidence for the involvement of TNF and NF-kappaB in hippocampal synaptic plasticity. Synapse 2000; 35(2):151–159.

    Article  PubMed  CAS  Google Scholar 

  71. Yeh SH, Lin CH, Lee CF et al. A requirement of nuclear factor-kappaB activation in fear-potentiated startle. J Biol Chem 2002; 277(48):46720–46729.

    Article  PubMed  CAS  Google Scholar 

  72. Minami M, Kuraishi Y, Satoh M. Effects of kainic acid on messenger RNA levels of IL-1 beta, IL-6, TNF alpha and LIF in the rat brain. Biochem Biophys Res Commun 1991; 176(2):593–598.

    Article  PubMed  CAS  Google Scholar 

  73. de Bock F, Dornand J, Rondouin G. Release of TNF alpha in the rat hippocampus following epileptic seizures and excitotoxic neuronal damage. Neuroreport 1996; 7(6):1125–1129.

    Article  PubMed  Google Scholar 

  74. Schall TJ, Lewis M, Koller KJ et al. Molecular cloning and expression of a receptor for human tumor necrosis factor. Cell 1990; 61(2):361–370.

    Article  PubMed  CAS  Google Scholar 

  75. Loetscher H, Pan YC, Lahm HW et al. Molecular cloning and expression of the human 55 kd tumor necrosis factor receptor. Cell 1990; 61(2):351–359.

    Article  PubMed  CAS  Google Scholar 

  76. Smith CA, Davis T, Anderson D et al. A receptor for tumor necrosis factor defines an unusual family of cellular and viral proteins. Science 1990; 248(4958):1019–1023.

    Article  PubMed  CAS  Google Scholar 

  77. Nophar Y, Kemper O, Brakebusch C et al. Soluble forms of tumor necrosis factor receptors (TNF-Rs). The cDNA for the type I TNF-R, cloned using amino acid sequence data of its soluble form, encodes both the cell surface and a soluble form of the receptor. EMBO J 1990;9(10):3269–3278.

    PubMed  CAS  Google Scholar 

  78. Kohno T, Brewer MT, Baker SL et al. A second tumor necrosis factor receptor gene product can shed a naturally occurring tumor necrosis factor inhibitor. Proc Nad Acad Sci USA 1990;87(21):8331–8335.

    Article  CAS  Google Scholar 

  79. Beattie EC, Stellwagen D, Morishita W et al. Control of synaptic strength by glial TNFalpha. Science 2002; 295(5563):2282–2285.

    Article  PubMed  CAS  Google Scholar 

  80. Tancredi V, D’Arcangelo G, Grassi F et al. Tumor necrosis factor alters synaptic transmission in rat hippocampal slices. Neurosci Lett 1992; 146(2):176–178.

    Article  PubMed  CAS  Google Scholar 

  81. Cunningham AJ, Murray CA, O’Neill LA et al. Interleukin-1 beta (IL-1 beta) and tumour necrosis factor (TNF) inhibit long-term potentiation in the rat dentate gyrus in vitro. Neurosci Lett 1996;203(1):17–20.

    Article  PubMed  CAS  Google Scholar 

  82. Bear MF. Mechanism for a sliding synaptic modification threshold. Neuron 1995; 15(1):1–4.

    Article  PubMed  CAS  Google Scholar 

  83. Cheng B, Christakos S, Mattson MP. Tumor necrosis factors protect neurons against metabolic-excitotoxic insults and promote maintenance of calcium homeostasis. Neuron 1994;12(1):139–153.

    Article  PubMed  CAS  Google Scholar 

  84. Mattson MP, Goodman Y, Luo H et al. Activation of NF-kappaB protects hippocampal neurons against oxidative stress-induced apoptosis: Evidence for induction of manganese superoxide dismutase and suppression of peroxynitrite production and protein tyrosine nitration. J Neurosci Res 1997;49(6):681–697.

    Article  PubMed  CAS  Google Scholar 

  85. Weeber EJ, Levenson JM, Sweatt JD. Molecular genetics of human cognition. Mol Intervent 2002;2(6):376–391.

    Article  CAS  Google Scholar 

  86. Phillips RG, LeDoux JE. Differential contribution of amygdala and hippocampus to cued and contextual fear conditioning. Behav Neurosci 1992; 106(2):274–285.

    Article  PubMed  CAS  Google Scholar 

  87. Kim JJ, Rison RA, Fanselow MS. Effects of amygdala, hippocampus, and periaqueductal gray lesions on short-and long-term contextual fear. Behav Neurosci 1993; 107(6):1093–1098.

    Article  PubMed  CAS  Google Scholar 

  88. Levenson JM, Choi S, Lee S-Y et al. A Bioinformatics analysis of memory consolidation reveals involvement of the transcription factor c-Rel. J Neurosci 2004; 24(16):3933–43.

    Article  PubMed  CAS  Google Scholar 

  89. Tumang JR, Owyang A, Andjelic S et al. c-Rel is essential for B lymphocyte survival and cell cycle progression. Eur J Immunol 1998; 28(12):4299–4312.

    Article  PubMed  CAS  Google Scholar 

  90. McDonald RJ, White NM. A triple dissociation of memory systems: Hippocampus, amygdala, and dorsal striatum. Behav Neurosci 1993; 107(1):3–22.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan M. Levenson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Levenson, J.M., Pizzi, M., Sweatt, J.D. (2006). NF-κB in Neurons. In: Liou, HC. (eds) NF-κB/Rel Transcription Factor Family. Molecular Biology Intelligence Unit. Springer, Boston, MA. https://doi.org/10.1007/0-387-33573-0_11

Download citation

Publish with us

Policies and ethics