Skip to main content

Development and Application of Compatible Discretizations of Maxwell’s Equations

  • Conference paper
Compatible Spatial Discretizations

Abstract

We present the development and application of compatible finite element discretizations of electromagnetics problems derived from the time dependent, full wave Maxwell equations. We review the H(curl)-conforming finite element method, using the concepts and notations of differential forms as a theoretical framework. We chose this approach because it can handle complex geometries, it is free of spurious modes, it is numerically stable without the need for filtering or artificial diffusion, it correctly models the discontinuity of fields across material boundaries, and it can be very high order. Higher-order H(curl) and H(div) conforming basis functions are not unique and we have designed an extensible C++ framework that supports a variety of specific instantiations of these such as standard interpolatory bases, spectral bases, hierarchical bases, and semi-orthogonal bases. Virtually any electromagnetics problem that can be cast in the language of differential forms can be solved using our framework. For time dependent problems a method-of-lines scheme is used where the Galerkin method reduces the PDE to a semi-discrete system of ODE’s, which are then integrated in time using finite difference methods. For time integration of wave equations we employ the unconditionally stable implicit Newmark-Beta method, as well as the high order energy conserving explicit Maxwell Symplectic method; for diffusion equations, we employ a generalized Crank-Nicholson method. We conclude with computational examples from resonant cavity problems, time-dependent wave propagation problems, and transient eddy current problems, all obtained using the authors massively parallel computational electromagnetics code EMSolve.

This work was performed under the auspices of the U.S. Department of Energy by the University of California, Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Deschamps. Electromagnetics and differential forms. IEEE Proceedings., 69(6):676–687, 1981.

    Article  Google Scholar 

  2. D. Baldomir. Differential forms and electromagnetism in 3-dimensional Euclidean space R3. IEEE Proceedings., 133(3):139–143, 1986.

    MathSciNet  Google Scholar 

  3. A. Bossavit. Computational Electromagnetism: Variational Formulation, Complementarity, Edge Elements. Academic Press, 1998.

    Google Scholar 

  4. R. Abraham, J.E. Marsden, and T. Ratiu. Manifolds, Tensor Analysis, and Applications. Applied Mathematical Sciences. Springer Verlag, second edition edition, 1996.

    Google Scholar 

  5. H. Whitney. Geometric Integration Theory. Princeton University Press, 1957.

    Google Scholar 

  6. J.C. Nédélec. Mixed finite elements in R3. Numer. Math., 35:315–341, 1980.

    Article  MathSciNet  MATH  Google Scholar 

  7. J.C. Nédélec. A new family of mixed finite elements in R3. Numer. Math., 50:57–81, 1986.

    Article  MathSciNet  MATH  Google Scholar 

  8. P.A. Raviart and J.M. Thomas. A Mixed Finite Element Method for 2nd Order Elliptic Problems. In I. Galligani and E. Mayera, editors, Mathematical Aspects of the Finite Element Method, Vol. 606 of Lect. Notes. on Mathematics, pp. 293–315. Springer Verlag, 1977.

    Google Scholar 

  9. F. Brezzi and M. Fortin. Mixed and Hybrid Finite Element Methods. Springer Series in Computational Mathematics. Springer Verlag, 1991.

    Google Scholar 

  10. R. Hiptmair. Canonical construction of finite elements. Math. Comp., 68(228):1325–1346, 1999.

    Article  MathSciNet  MATH  Google Scholar 

  11. I. Babuska, T. Strouboulis, C.S. Upadhyay, and S.K. Gangaraj. A posteriori estimation and adaptive control of the pollution error in the h-version of the finite element method for finite element solution of Helmholtz. Internat. J. Numer. Methods Engrg., 38(24):4207–4235, 1995.

    Article  MathSciNet  MATH  Google Scholar 

  12. I. Babuska, F. Ihlenburg, T. Strouboulis, and S.K. Gangaraj. A posteriori error estimation for finite element solution of Helmholtz. Internat. J. Numer. Methods Engrg., 40(21):3883–3900, 1997.

    Article  MathSciNet  MATH  Google Scholar 

  13. S. Warren and W. Scott. An investigation of numerical dispersion in the vector finite element method using quadrilateral elements. IEEE Trans. Ant. Prop., 42(11):1502–1508, 1994.

    Article  MathSciNet  MATH  Google Scholar 

  14. S. Warren and W. Scott. Numerical dispersion in the finite element method using triangular edge elements. Opt. Tech. Lett, 9(6):315–319, 1995.

    Google Scholar 

  15. D.A. White. Numerical dispersion of a vector finite element method on skewed hexahedral grids. Commun. Numer. Meth. Engng., 16:47–55, 2000.

    Article  MATH  Google Scholar 

  16. M. Ainsworth. Dispersive properties of high-order Nedelec/edge element approximation of the time-harmonic Maxwell equations. Philisophical Transactions of the Royal Society of London, 362(1816):471–491, 2004.

    Article  MathSciNet  MATH  Google Scholar 

  17. E. Tonti. A direct formulation of field laws: The cell method. CMES, 2(2):237–258, 2001.

    Google Scholar 

  18. T. Weiland. Time domain electromagnetic field computation with finite difference methods. Int. J. Numer. Modelling, 9:295–319, 1996.

    Article  Google Scholar 

  19. M. Clemens and T. Weiland. Discrete electromagnetism with the finite integration technique. In F. Texeira, editor, Geometric Methods for Computational Electromagnetics, Vol. 32 of PIER, pp. 189–206. EMW Publishing, Cambridge, MA, 2001.

    Google Scholar 

  20. J.M. Hyman and M.J. Shashkov. Mimetic discretizations for maxwell’s equations. J. Comput. Phys., 151(2):881–909, 1999.

    Article  MathSciNet  MATH  Google Scholar 

  21. K.S. Yee. Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media. IEEE Trans. Ant. Prop., 14(3):302–307, 1966.

    Article  MATH  Google Scholar 

  22. F.L. Teixeira and W.C. Chew. Lattice electromagnetic theory from a topological viewpoint. J. Math. Phys., 40(1): 169–187, 1999.

    Article  MathSciNet  MATH  Google Scholar 

  23. F.L. Teixeira. Geometric Methods in Computational Electromagnetics, Vol. PIER 32. EMW Publishing, Cambridge, Mass., 2001.

    Google Scholar 

  24. R. Hiptmair. Discrete Hodge operators: An algebraic perspective. J. Electromagnteic Waves Appl., 15(3):343–344, 2001.

    MathSciNet  Google Scholar 

  25. D.N. Arnold and F. Brezzi. Mixed andnonconforming finite elememnt methods: implementation, postprocessing, and error estimates. Math. Modelling and Numer. Anal., 19:7–32, 1985.

    MathSciNet  MATH  Google Scholar 

  26. D.N. Arnold. Mixed finite element methods for elliptic problems. Comput. Methods Appl. Mech. Engrg., 82(1–3):281–300, 1990.

    Article  MathSciNet  MATH  Google Scholar 

  27. P.G. Ciarlet. The Finite Element Method for Elliptic Problems. North-Holland, 1978.

    Google Scholar 

  28. R. Graglia, D. Wilton, and A. Peterson. Higher order interpolatory vector bases for computational electromagnetics. IEEE Trans. Ant. Prop., 45(3):329–342, 1997.

    Article  MathSciNet  Google Scholar 

  29. R. Graglia, P. Wilton, A. Peterson, and I.-L. Gheorma. Higher order interpolatory vector bases on prism elements. IEEE Trans. Ant. Prop., 46(3):442–450, 1998.

    Article  MathSciNet  MATH  Google Scholar 

  30. P. Castillo, R. Rieben, and D. White. FEMSTER: An object oriented class library of discrete differential forms. ACM Trans. Math. Soft. in press.

    Google Scholar 

  31. P. Castillo, R. Rieben, and D. White. FEMSTER: An object oriented class library of discrete differential forms. In Proceedings of the 2003 IEEE International. Antennas and Propagation Symposium, Vol. 2, pp. 181–184, Columbus, Ohio, June 2003.

    Google Scholar 

  32. P. Castillo, J. Koning, R. Rieben, M. Stowell, and D. White. Discrete differential forms: A novel methodology for robust computational electromagnetics. Technical Report UCRL-ID-151522, Lawrence Livermore National Laboratory, Center for Applied Scientific Computing, January 2003.

    Google Scholar 

  33. R. Rieben, D. White, and G. Rodrigue. Improved conditioning of finite element matrices using new high order interpolatory bases. IEEE Trans. Ant. Prop., 52(10):2675–2683, October 2004.

    Article  MathSciNet  Google Scholar 

  34. A. Fisher, R. Rieben, G. Rodrigue, and D. White. A generalized mass lumping technique for vector finite element solutions of the time dependent Maxwell equations. IEEE Trans. Ant. Prop., December 2004. accepted for publication.

    Google Scholar 

  35. A. Bossavit. Solving Maxwell equations in a closed cavity, and the question of spurious modes. IEEE Trans. Mag., 26(2):702–705, 1990.

    Article  Google Scholar 

  36. Z.J. Cendes. Vector finite elements for electromagnetic field computation. IEEE. Trans. Mag., 27(5):3958–3966, 1991.

    Article  Google Scholar 

  37. D.A. White and J.M. Koning. Computing solenoidal eigenmodes of the vector Helmholtz equation: a novel approach. IEEE Trans. Mag., 38(5):3420–3425, 2002.

    Article  Google Scholar 

  38. R. Lehoucq, D. Sorenson, and C. Yang. ARPACK User’s Guide: Solution of Large. Scale Eigenvalue Problems with Implicitly Restarted Arnoldi Methods. SIAM, 1998.

    Google Scholar 

  39. P. Balleyguier. Coupling slots measurements against simulation for Trispal accelerating cavities. In Linac’ 98, p. 130. Chicago, 1998.

    Google Scholar 

  40. R. Rieben, G. Rodrigue, and D. White. A high order mixed vector finite element method for solving the time dependent Maxwell equations on unstructured grids. J. Comput. Phys., 204(2):490–519, April 2005.

    Article  MATH  Google Scholar 

  41. R. Rieben, D. White, and G. Rodrigue. High order symplectic integration methods for finite element solutions to time dependent maxwell equations. IEEE Trans. Ant. Prop., 52(8):2190–2195, August 2004.

    Article  MathSciNet  Google Scholar 

  42. R. Rieben. A Novel High Order Time Domain Vector Finite Element Method for. the Simulation of Electromagnetic Devices. PhD thesis, University of California at Davis, Livermore, California, 2004.

    Google Scholar 

  43. D. Marcuse. Curvature loss formula for optical fibers. J. Opt. Soc. Am., 66(3):216–220, 1976.

    Article  Google Scholar 

  44. J. Koning, R. Rieben, and G. Rodrigue. Vector finite element modeling of the full-wave Maxwell equations to evaluate power loss in bent optical fibers. IEEE/OSA J. Lightwave Tech., May 2005. article in press.

    Google Scholar 

  45. H.S. Sözüer and J.P. Dowling. Photonic band calculations for woodpile structures. J. Mod. Opt., 41(2):231–239, 1994.

    Google Scholar 

  46. E Özbay, A. Abeyta, G. Tuttle, M. Trinigides, R. Biswas, C.T. Chan, CM Souk-oulis, and K.M. Ho. Measurement of a three-dimensional photonic band gap in a crystal structure made of dielectric rods. Phys. Rev. B, 50(3): 1945–1948, 1994.

    Article  Google Scholar 

  47. D.I. Hoult. Sensitivity and power deposition in high-field imaging experiment. J. Magn. Reson. Imag., 12:46–67, 200.

    Google Scholar 

  48. J.S. Tropp. Image brightening in samples of high dielectric constant. J. Magnetic. Resonance, 167(1):12–24, 2004.

    Article  Google Scholar 

  49. P. Bochev, C. Garasi, J. Hu, A. Robinson, and R. Tuminaro. An improved algebraic multigrid method for solving maxwell’s equations. SIAM J. Sci. Comp., 25(2):623–642, 2003.

    Article  MathSciNet  MATH  Google Scholar 

  50. S. Reitzinger and J. Schoberl. An algebraic multigrid method for finite element discretization with edge elements. Numer. Linear Algebra Appl., 9:223–238, 2002.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, LLC

About this paper

Cite this paper

White, D.A., Koning, J.M., Rieben, R.N. (2006). Development and Application of Compatible Discretizations of Maxwell’s Equations. In: Arnold, D.N., Bochev, P.B., Lehoucq, R.B., Nicolaides, R.A., Shashkov, M. (eds) Compatible Spatial Discretizations. The IMA Volumes in Mathematics and its Applications, vol 142. Springer, New York, NY. https://doi.org/10.1007/0-387-38034-5_11

Download citation

Publish with us

Policies and ethics