Skip to main content

Understanding Properties and Fabrication Processes of Superconducting Nb3Sn Wires

  • Chapter
Cryogenic Engineering

Part of the book series: International Cryogenics Monograph Series ((ICMS))

Abstract

The fabrication of multifilamentary Nb3Sn wireswas started by the discovery of the bronze process, a solid-state diffusion process, to form filamentary A15 structure compounds in 1969–1970. Through a number of improvements and modifications of the original process in the ensuing years, these wires are nowindispensable components for the construction of magnets, producing very high magnetic fields for nuclear magnetic resonance spectroscopy, magnetic fusion experiments, and future high-energy particle accelerators. A comprehensive review article summarizes the state of the knowledge up to 1980 on the formation mechanisms and the superconducting properties of the A15 compounds that were fabricated by this process. Since 1980, significant advances have been made in the basic understanding of the factors controlling the growth processes, and basic superconducting properties of the bronze-processed Nb3Sn. In particular, significant progress has been made in understanding the effects of alloying on these properties and mechanisms for fluxline pinning in the compound. Furthermore, for the practical usage of these wires, tremendous progress in the critical-current densities of multifilamentary Nb3Sn wires has been made over the last several years. This chapter reviews these new findings about Nb3Sn by the solid-state diffusion process and the critical-current densities of the state-of-the-art multifilamentary Nb3Sn wires.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Matthias, B.T., Geballe, T.H., Geller, S., and Corenzwit, E., Phys. Rev., 95, 1435, 1954.

    Article  ADS  Google Scholar 

  2. Howlett, E.W., Great Britain Pat. 52, 623/69 (Filed Oct. 27, 1969). US Pat. 3, 728, 165 [Filed Oct. 19, 1970]. Kaufman, A.R., and Pickett, J.J., Bull. Amer. Phys. Soc., 15, 833, 1970. Also, 1970 Applied Superconducting Conference, Boulder, Colorado. Tachikawa, K., International Cryogenic Engineering Conference, Berlin, 1970, Iliffe Sci. Tech. Pub., 1971, p. 339.

    Google Scholar 

  3. Suenaga, M., “Metallurgy of Continuous Filamentary A15 Superconductors”, Superconductor Materials Science: Metallurgy, Fabrication, and Applications, Foner S., and Schwartz, B.B., eds., Plenum Press, New York, 1981. pp. 201–276.

    Google Scholar 

  4. Farrell, H.H., Gilmer, G.H., and Suenaga, M., J. Appl. Phys., 45, 4025–4035, 1975; Thin Solid Films, 25, 253–264, 1975.

    Article  ADS  Google Scholar 

  5. Togano, K., Asano, Y., and Tachikawa, K., J. Less-Common Metals, 68, 15, 1979.

    Article  Google Scholar 

  6. Scanlan, R.M., Fietz, W.A., and Koch, E.F., J. Appl. Phys., 46, 2244–2249, 1975.

    Article  ADS  Google Scholar 

  7. Livingston, J.D., Phys. Stat. Solidi A, 44, 295, 1977.

    Article  ADS  Google Scholar 

  8. Livingston, J.D., IEEE Trans. Magn., 14, 611, 1978.

    Article  ADS  Google Scholar 

  9. Suenaga, M., Aihara, K., Kaiho, K., and Luhman, T.S., “Superconducting Properties of (Nb, Ta)3Sn Wires Fabricated by the Bronze Process”, Advances in Cryogenic Engineering, Vol. 26, Clark, A.F., and Reed, R.P., eds., Plenum Press, New York, 1980, pp. 442–450.

    Google Scholar 

  10. Suenaga, M., Okuda, S., Sabatini, R., Itoh, K., and Luhman, T.S., “Superconducting Properties of (Nb, Ti)3Sn Wires Fabricated by the Bronze Process”, Advances in Cryogenic Engineering, Vol. 28, Reed, R.P., and Clark, A.F., eds., Plenum Press, New York, 1982, pp. 379–387.

    Google Scholar 

  11. Tachikawa, K., Asano, T., and Takeuchi, T., Appl. Phys. Lett., 39, 766–768, 1981. Tachikawa, K., Takeuchi, T., Asano, T., Ikjima, Y., and Sekine, H., “Effects of the IVa Elemental Additions on Composite-Processed Nb3Sn”, Advances in Cryogenic Engineering, Vol. 28, Reed, R.P., and Clark, A.F., eds., Plenum Press, New York, 1982. pp. 389–398. Tachikawa, K., Sekine, H., and Iijima, Y., J. Appl. Phys., 53, 5354–5356, 1983.

    Article  ADS  Google Scholar 

  12. Kramer, E., J. Appl. Phys., 44, 1360–1370, 1973.

    Article  ADS  Google Scholar 

  13. Suenaga, M., and Welch, D.O., “Flux Pinning in Bronze Processed Nb3Sn Wires”, Filamentary A15 Superconductors, Suenaga, M., and Clark, A.F., eds., Plenum Press, New York, 1980, pp. 131–142.

    Google Scholar 

  14. Rupp, G., Springer, E., and Roth, S., Cryogenics, 17, 144, 1977.

    Article  Google Scholar 

  15. Kuroda, T., Suenaga, M., Klamut, C.J., and Sabatini, R.L., “Internal Sn Processed Multifilamentary Wires Alloyed with Mg, Zn + Ni, and Ti Through the Sn Core”, Advances in Cryogenic Engineering, Vol. 32, Reed, R.P., and Clark, A.F., eds., Plenum Press, New York, 1986, pp. 1011–1018.

    Google Scholar 

  16. Miyashita, S., Yoshizaki, K., Hashimoto, Y., Itoh, K., and Tachikawa, K., “The Structure and Superconducting Properties of Multifilamentary Nb3Sn Wires by Internal Sn Diffusion Process Using Sn–Ti Cores”, Advances in Cryogenic Engineering, Vol. 32, Reed, R.P., and Clark, A.F., eds., Plenum Press, New York, 1986, pp. 995–1002.

    Google Scholar 

  17. Gregory, E., Tomsic, M., Suption, M.D., Peng, X., Wu, X., Collings, E.W., and Zeitlin, B.A., IEEE Trans. Appl. Supercond., 15, 3478, 2005.

    Article  Google Scholar 

  18. Suenaga, M., Welch, D.O., Sabatini, R.L., Kammerer, O.F., and Okuda, S., J. Appl. Phys., 59, 840–853, 1986.

    Article  ADS  Google Scholar 

  19. Luhman, T.S., and Suenaga, M., Appl. Phys. Lett., 29, 61–63, 1976.

    Article  ADS  Google Scholar 

  20. Ekin, J., “Strain Effects in Superconducting Compound”, Advances in Cryogenic Engineering, Vol. 30, Clark, A.F., and Reed, R.P., eds., Plenum Press, New York, 1984. pp. 823–835.

    Google Scholar 

  21. Talvacchio, J., Thesis, Stanford University, 1982.

    Google Scholar 

  22. Devantay, H., Jorda, J. L., Dcroux, M., Muller, J., and Flukiger, R., J. Mater. Sci., 16, 2145, 1981.

    Article  ADS  Google Scholar 

  23. Suenaga, M., Horigami, O., and Luhman, T.S., Appl. Phys. Lett., 25, 624–27, 1974.

    Article  ADS  Google Scholar 

  24. Cited in Ref. [25].

    Google Scholar 

  25. Suenaga, M., and Jensen, W., Appl. Phys. Lett., 43, 791–793, 1983.

    Article  ADS  Google Scholar 

  26. Suenaga, M., Cordman, R.R., and Welch, D.O., “Chemical Compositions of Grain Boundaries in Pure and Alloyed Nb3Sn”, Preliminary report in Proceedings of International Symposium on Flux Pinning and Electromagnetic Properties of Superconductors, Matsushita, T., Yamafuji, K., and Irie, F., eds., 1986, pp. 142–145.

    Google Scholar 

  27. Bruzzone, P., ten Kate, H.H., Nishi, M., Shikov, A., Minervini, J., and Takayasu, M., Advances in Cryogenic Engineering, Vol. 42B, Summers, L., ed., Plenum Press, New York, 1995, pp. 1351–1358.

    Google Scholar 

  28. Zerweck, G., J. Low Temp. Phys., 42, 1, 1981.

    Article  ADS  Google Scholar 

  29. Yetter, W.E., Thomas, D.A., and Kramer, E.J., Philos. Mag. B, 46, 523, 1982.

    Article  Google Scholar 

  30. Welch, D.O., IEEE Trans. Magn., MAG-21, 827–830, 1984.

    ADS  Google Scholar 

  31. Orlando, T.P., McNiff, E.J., Foner, S., and Beasley, M.R., Phys Rev. B, 19, 4545–4561, 1979.

    Article  ADS  Google Scholar 

  32. Evetts, J.E., and Plummer, C.J.G., “Flux Pinning in Polycrystalline A15 Bronze Route Filaments”, Proceedings of International Symposium on Flux Pinning and Electromagnetic Properties of Superconductors, Matsushita, T., Yamafuji, K., and Irie, F., eds., 1986, pp. 146–151.

    Google Scholar 

  33. Welch, D.O., J. Adv. Sci., 4, 81–85, 1992; IEEE Trans. Appl. Supercond., 3, 1476–1478, 1993.

    Google Scholar 

  34. Cottrell, A.H., Dislocations and Plastic Flow in Crystals, Clarendon Press, Oxford, 1953.

    MATH  Google Scholar 

  35. Wordenweber, R., Rep. Prog. Phys., 62, 187–236, 1999.

    Article  ADS  Google Scholar 

  36. Lindenhovius, J.L.H., Hornseveld, E.M., den Ouden, A., Wessel, W.A.J., and ten Kate, H.H.J., IEEE Trans. Appl. Supercond., 10, 975–978, 2000.

    Article  Google Scholar 

  37. Miyazaki, T., Kato, H., Zaitsu, K., Miyatake, T., Hamada, M., and Tchikawa, K., IEEE Trans. Appl. Supercond., 15, 3490, 2005.

    Article  Google Scholar 

  38. Kunzler, J.E., Buchler, E., Hsu, F.S.L., and Wernick, J.H., Phys. Rev. Lett., 6, 89–92, 1961.

    Article  ADS  Google Scholar 

  39. van Beijenen, C.A.M., and Elen, J.D., IEEE Trans. Magn., MAG-15, 87–90, 1979.

    Article  ADS  Google Scholar 

  40. Scanlan, R.M., Dieterich, D.R., and Gourlay, S.A., “A New Generation Nb3Sn Wire, and the Prospects for Its Use in Particle Accelerators”, Advances in Cryogenic Engineering, Vol. 50B, Balachandran, U., ed., American Institute of Physics, New York, 2004, pp. 349–358.

    Google Scholar 

  41. Hong, S.A., Field, M., Parrell, J.A., and Zhang, Y., “ Nb3Sn Critical Current Density Improvement for Very High Field Superconducting Magnets”, Proceedings of International Workshop on Progress of Nb-Based Superconductors, Inoue, K., Takeuchi, T., and Kikuchi, A., eds., 2004, pp. 129–134.

    Google Scholar 

  42. Parrell, J.A., Field, M.B., Zhang, Y., and Hong, S., “ Nb3Sn Conductor Development for Fusion and Particle Accelerator Applications”, Advances in Cryogenic Engineering, Vol. 50B, Balachandran, U., ed., American Institute of Physics, New York, 2004, pp. 369–375.

    Google Scholar 

  43. Parrell, J.A., Field, M.B., Zhang, Y., and Hong, S., IEEE Trans. Appl. Supercond., 15, 1200–1204, 2005.

    Article  Google Scholar 

  44. Gregory, E., “Lessons Learned on the Development and Manufacture of Internal-Tin Nb3Sn Strand from Work on ITER CSMC and Other Fusion and HEP Applications”, Advances in Cryogenic Engineering, Vol. 50, Balachandran, U., ed., American Institute of Physics, New York, 2004, pp. 359–368.

    Google Scholar 

  45. Miyazaki, T., Miyatake, T., Kato, T., Zaitsu, K., Hanada, M., Murakami, Y., and Hase, T., J. Cryog. Soc. Jpn., 39, 415–442, 2004 (in Japanese).

    Article  Google Scholar 

  46. Yoshikawa, M., Kiyoshi, T., Matsumoto, S., Sato, A., Wada, H., Ito, S., Miki, T., Ozaki, O., Miyazaki, T., Hamada, M., Murakami, Y., Hirose, R., and Noguchi, T., J. Cryog. Soc. Jpn., 39, 625–631, 2004 (in Japanese).

    Article  Google Scholar 

  47. Hashimoto, Y., Yoshizaki, K., and Tanaka, M., Proceedings of 5th International Cryogenic Conference, Kyoto, Japan, 1974.

    Google Scholar 

  48. Higuchi, N., Tsuchiya, K., Klamut, C.J., and Suenaga, M., “Superconducting Properties of Nb3Sn Multifilamentary Wires Fabricated by Internal Tin Process”, Advances in Cryogenic Engineering, Vol. 30, Clark, A.F., and Reed, R.P., eds., Plenum Press, New York, 1984, pp. 738–746.

    Google Scholar 

  49. Imazumi, M., Wakata, M., Yoshizaki, K., Fujiwara, F., and Hashimoto, Y., “The Effects of In Addition on the Properties of Internal Tin Diffusion Processed Nb3Sn Wires”, Advances in Cryogenic Engineering, Vol. 30, Clark, A.F., and Reed, R.P., eds., Plenum Press, New York, 1984, pp. 779–786.

    Google Scholar 

  50. Hazelton, D.W., Ozeryansky, G.M., Walker, M.S., Zeitlin, B.A., Hemachalam, K., Dalder, E.N.C., and Summers, L., “Internal Sn Process Nb3Sn Conductors for 18 T”, Advances in Cryogenic Engineering, Vol. 32, Reed, R.P., and Clark, A.F., eds., Plenum Press, New York, 1986, pp. 1003–1009.

    Google Scholar 

  51. Zietlin, B.A., Supergenics, LLC, personal communication, August 2005.

    Google Scholar 

  52. Hong, S., Oxford Superconducting Technology, personal communication, August 2005.

    Google Scholar 

  53. Kubo, Y., Egawa, K., Nagai, T., Sone, T., Ikeda, B., Hasegawa, M., and Kosuge, M., J. Cryog. Soc. Jpn., 40, 86, 2005 (in Japanese).

    Article  Google Scholar 

  54. Kubo, Y., US Patent 6, 251, 529.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Suenaga, M. (2007). Understanding Properties and Fabrication Processes of Superconducting Nb3Sn Wires. In: Timmerhaus, K.D., Reed, R.P. (eds) Cryogenic Engineering. International Cryogenics Monograph Series. Springer, New York, NY. https://doi.org/10.1007/0-387-46896-X_12

Download citation

Publish with us

Policies and ethics