Skip to main content

Dynamic Analysis of Multiple Flexible-Body Systems

  • Chapter
Fundamentals of Multibody Dynamics
  • 3356 Accesses

Abstract

Dynamic analysis of multibody systems has gained tremendous popularity in the past two decades. The research has been the subject of numerous publications [1]–[10]. While most of the significant theory has been developed, some computational issues remain to be resolved. The latter is a result of the strategic development of the kinematics involved and the formalism used in for the development of the equations of motion. In the recursive formulation developed in reference [27]–[31], relative coordinates were used in conjunction with Boolean matrices and the tensor notation, which made the notation somehow difficult to follow. While the tensor notation adopted kept the equations in compact form, it hid some vital information from interested readers. This chapter focuses on developing an all-purpose algorithm for the dynamic simulation of flexible treelike systems, making use of matrix representation at all levels. The equations developed are applicable to high-speed systems undergoing large amounts of rotation, and a strict finite-element formulation is presented. The inertial moment of the elements, the damping forces of the structure, and geometrical stiffening forces are all included in an explicit form to be able to monitor their contribution and how they influence the dynamics of multibody systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bodley, C. S., Devers, A. D., Park, A. C. and Frisch, H. P., A Digital Computer Program for the Dynamic Interaction Simulation of Controls and Structure (DISCOS), Vols. 1 and 2, NASA TP-1219, May 1978.

    Google Scholar 

  2. Frisch, H. P., A Vector-Dyadic Development of the Equations of Motion for N-Coupled Flexible Bodies and Point Masses, NASA TN D-8047, Aug. 1975.

    Google Scholar 

  3. Ho, J. Y. L., Direct Path Method for Flexible Multibody Spacecraft Dynamics, J. Spacecraft Rockets, Vol. 14, Jan.–Feb. 1977, pp. 102–111.

    Google Scholar 

  4. Ho, J. Y. L. and Herber D. R., Development of Dynamics and Control Simulation of Large Flexible Space Systems, J. Guide Control Dyn., Vol. 8, May–June 1985, pp. 374–384.

    MATH  Google Scholar 

  5. Singh, R. P., Vandervoort, R. J. and Likins, P.W., Dynamics of Flexible Bodies in Tree Topology—A Computer Oriented Approach, AIAA Paper 84-1024, 1984.

    Google Scholar 

  6. Huston, R. L., Multibody Dynamics including the Effects of Flexibility and Compliance, Comput. Struct., Vol. 14: No. 5–6, 1981, pp. 443–451.

    Article  Google Scholar 

  7. Singh, R. P. and Likins, P. W., Manipulator Interactive Design with Interconnected Flexible Elements, Paper TAG-11:00, Proceedings of the American Control Conference, American Automatic Control Council, IEEE Service Center, 1983, pp. 505–512.

    Google Scholar 

  8. Sunada, W. and Dubowsky, S., The Application of Finite-Element Methods to the Dynamic Analysis of Flexible Spatial and Co-planar Linkage Systems, J. Mech. Des., Vol. 103: No. 3, 1981, pp. 643–651.

    Article  Google Scholar 

  9. Book, W. J. and Majett, M., Controller Design for Flexible Distributed Parameter Mechanical Arms via Combined State Space and Frequency Domain Techniques, J. Mech. Des., Vol. 103: No. 3, 1981, pp. 101–120.

    Google Scholar 

  10. Bejczy, A. K., and Paul, R. P., Simplified Robot Arm Dynamics for Control, Proceedings of the 20th IEEE Conference on Decision and Control, Institute for Electrical and Electronics Engineers Control System Society, IEEE Service Center.

    Google Scholar 

  11. Geradin, M., Robter, G. and Bernardin, C., Dynamic Modeling of Manipulators with Flexible Members, in Advance Software in Robotics (A. Danthine and M. Geradin, eds.), North-Holland, Amsterdam, 1983, pp. 27–42.

    Google Scholar 

  12. Cannon, R. H. and Schmitz, E., Initial Experiments on the End-Point Control of a Flexible One Link Robot, Int. J. Robot. Res., Vol. 3: No. 3, 1984, pp. 62–75.

    Article  Google Scholar 

  13. Kane, T. R., Ryan, R. R. and Banerjee, A. K., Dynamics of a Cantilever Beam Attached to a Moving Base, J. Guid. Control Dyn., Vol. 10: No. 2, 1987.

    Google Scholar 

  14. Zienkiewicz, O. C., The Finite-Element Method, McGraw-Hill, New York, 1977.

    MATH  Google Scholar 

  15. Chen, W. F. and Han, D. J., Plasticity for Structural Engineers, Springer-Verlag, New York, 1988.

    MATH  Google Scholar 

  16. Kraus, H., Creep Analysis, Wiley, New York, 1980.

    Google Scholar 

  17. Andrade, C., Creep and Recovery, American Society for Metals, Metals Park, OH, 1957, pp. 176–198.

    Google Scholar 

  18. Garofalo, F., Properties of Crystalline Solids, ASTM Special Technical Publication 283, 1960, p. 82.

    Google Scholar 

  19. Gandhi, M. V. and Thompson, B. S., The Finite-Element Analysis of Flexible Components of Mechanical Systems Using a Mixed Variational Principle, ASME Paper 80-DET-64.

    Google Scholar 

  20. Kane, T. R., Ryan, R. R. and Banerjee, A. K., Dynamics of a Cantilever Beam Attached to a Moving Base, J. Guid. Control Dyn., Vol. 10: No. 2, 1987.

    Google Scholar 

  21. Kane, T. R. and Levinson, D. A., Dynamics: Theory and Applications, McGraw-Hill, New York, 1985.

    Google Scholar 

  22. Huston, R. L. and Passerello, C., Multibody Structural Dynamics Including Translation between the Bodies, Comput. Struct., Vol. 11, 1980, pp. 715–720.

    MathSciNet  Google Scholar 

  23. Amirouche, F. M. L. and Ider, S. K., Determination of the Generalized Constraint Forces in Multibody Systems Dynamics Using Kane’s Equations, J. Theor. Appl. Mech., Vol. 7: No. 1, 1988.

    Google Scholar 

  24. Przemieniecki, J. S., Theory of Matrix Structural Analysis, McGraw-Hill, New York, 1968.

    MATH  Google Scholar 

  25. Dym, C. L. and Shames, I. M., Solid Mechanics: A Variational Approach, McGraw-Hill, New York, 1973.

    Google Scholar 

  26. Hurty, W. C., Dynamic Analysis of Structural Systems Using Component Modes, AIAA J., Vol. 3, Apr. 1965, pp. 678–685.

    Article  Google Scholar 

  27. Ider, S. K. and Amirouche, F. M. L., A Recursive Formulation of the Equations of Motion for Articulated Structures with Closed-Loops-An Automated Approach, Int. J. Comput. Struct., Vol. 30: No. 5, 1988.

    Google Scholar 

  28. Shareef, N. H. and Amirouche, F. M. L., Implementation of 3D-Isoparametric Finite Elements on a Supercomputer for this Formulation of Recursive Dynamical Equations of Multibody Systems, AIAA guidance, navigation and control conference, New Orleans, LA, Technical Papers. V, 1991, pp. 12–14.

    Google Scholar 

  29. Shareef, N. H., Dynamic Analysis of Time Variant Constraints in Multibody Systems—An Exploitation of Vector Processors, Ph.D. thesis submitted at the University of Illinois at Chicago, 1991.

    Google Scholar 

  30. Ider, S. K. and Amirouche, F. M. L., Nonlinear Modelling of Flexible Multibody Systems Dynamics Subject to Variable Constraints, J. Appl. Mech.,Vol. 56: No. 1, 1989.

    Google Scholar 

  31. Ider, S. K. and Amirouche, F. M. L., The Influence of Geometric Nonlinearities in the Dynamics of Flexible Treelike Structures, J. Guid. Control Dyn., Vol. 12: No. 6, 1989, pp. 830–837.

    Article  MATH  MathSciNet  Google Scholar 

  32. Amirouche, F. M. L., DYAMUS (Dynamic Analysis of Multibody Systems): AGeneral-Purpose Program. Department of Mechanical Engineering, University of Illinois at Chicago, 1990.

    Google Scholar 

  33. Amirouche, F. M. L. and Shareef, N., DARS: Dynamic Analysis of Rotorcraft Systems—A General-Purpose Code, NASA Lewis Technical Report, 1991.

    Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Birkhäuser Boston

About this chapter

Cite this chapter

(2006). Dynamic Analysis of Multiple Flexible-Body Systems. In: Fundamentals of Multibody Dynamics. Birkhäuser Boston. https://doi.org/10.1007/0-8176-4406-7_11

Download citation

  • DOI: https://doi.org/10.1007/0-8176-4406-7_11

  • Publisher Name: Birkhäuser Boston

  • Print ISBN: 978-0-8176-4236-5

  • Online ISBN: 978-0-8176-4406-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics