Skip to main content

Part of the book series: Progress in Mathematics ((PM,volume 238))

  • 802 Accesses

Abstract

In a series of papers starting in the late 1970s, Carlos Berenstein and collaborators explored various aspects of the problem of recovering a function locally from its convolutions with compactly supported distributions. These problems have variously been referred to as multisensor deconvolution problems, analytic and polynomial Bezout problems, and local Pompeiu problems. The focus of Carlos’ work in this area has been to find explicit and computable solutions. The purpose of this paper is to present a point of view on a small subclass of these problems in which some classical techniques from the theory of sampling and interpolation in Paley-Wiener spaces of entire functions can shed some light on their explicit solution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Avdonin and S. Ivanov, Families of Exponentials, Cambridge University Press, Cambridge, UK, 1995.

    MATH  Google Scholar 

  2. C. A. Berenstein and B. A. Taylor, The “three squares” theorem for continuous functions, Arch. Rat. Mech. Anal., 63 (1977), 253–259.

    Article  MATH  MathSciNet  Google Scholar 

  3. C. A. Berenstein and A. Yger, Le problème de la déconvolution, J. Functional Anal., 54 (1983), 113–160.

    Article  MATH  MathSciNet  Google Scholar 

  4. C. A. Berenstein, A. Yger, and B. A. Taylor, Sur quelques formules explicites de deconvolution, J. Optics, 14 (1983), 75–82.

    Article  Google Scholar 

  5. C. A. Berenstein and D. Struppa, Small degree solutions for the polynomial Bezout equation, Linear Algebra Appl., 98 (1988), 41–55.

    Article  MATH  MathSciNet  Google Scholar 

  6. C. A. Berenstein and R. Gay, Le Problème de Pompeiu local, J. Anal. Math., 52 (1989), 133–166.

    Article  MATH  MathSciNet  Google Scholar 

  7. C. A. Berenstein and A. Yger, Analytic Bezout identities, Adv. Appl. Math., 10 (1989), 51–74.

    Article  MATH  MathSciNet  Google Scholar 

  8. C. A. Berenstein, R. Gay, and A. Yger, The three squares theorem, a local version, in C. Sadosky, ed., Analysis and Partial Differential Equations: A Collection of Papers Dedicated to Mischa Cotlar, Lecture Notes in Pure and Applied Mathematics, Marcel Dekker, New York, 1990, 35–50.

    Google Scholar 

  9. C. A. Berenstein and A. Yger, Inversion of the local Pompeiu transform, J. Anal. Math., 54 (1990), 259–287.

    Article  MATH  MathSciNet  Google Scholar 

  10. C. A. Berenstein and E. V. Patrick, Exact deconvolution for multiple convolution sensors: An overview plus performance characterizations for imaging sensors, Proc. IEEE, 78-4 (1990) (special issue on multidimensional signal processing), 723–734.

    Article  Google Scholar 

  11. C. A. Berenstein, S. Casey, and E. V. Patrick, Systems of Convolution Equations, Deconvolution, and Wavelet Analysis, white paper, Systems Research Center, University of Maryland, College Park, MD, 1990.

    Google Scholar 

  12. C. A. Berenstein and A. Yger, Effective Bezout identities in Q[z 1,..., Z n], Acta Math., 166 (1991), 69–120.

    Article  MATH  MathSciNet  Google Scholar 

  13. C. A. Berenstein and B. Q. Li, Interpolating varieties for weighted spaces of entire functions in C n, Publ. Mat., 38-1 (1994), 157–173.

    MATH  MathSciNet  Google Scholar 

  14. C. A. Berenstein and B. Q. Li, Interpolating varieties for spaces of meromorphic functions, J. Geom. Anal., 5-1 (1995), 1–48.

    Article  MATH  MathSciNet  Google Scholar 

  15. C. A. Berenstein, B. Q. Li, and A. Vidras, Geometric characterization of interpolating varieties for the (FN)-space A 0p of entire functions, Canad. J. Math., 47-1 (1995), 28–43.

    MATH  MathSciNet  Google Scholar 

  16. C. A. Berenstein, D.-C. Chang, and B. Q. Li, Interpolating varieties and counting functions in C n, Michigan Math. J., 42-3 (1995), 419–434.

    Article  MATH  MathSciNet  Google Scholar 

  17. C. A. Berenstein, J. Baras, and N. Sidiropolis, Two-dimensional signal deconvolution: Design issues related to a novel multisensor-based approach, in S.-S. Chen, Stochastic and Neural Methods in Signal Processing, Image Processing, and Computer Vision, Proceedings of SPIE 1569, SPIE, Bellingham, WA, 1991.

    Google Scholar 

  18. S. Casey and D. Walnut, Systems of convolution equations, deconvolution, Shannon sampling and the Gabor and wavelet transform, SIAM Rev., 36-4 (1994), 537–577.

    Article  MATH  MathSciNet  Google Scholar 

  19. S. Casey and D. Walnut, Residue and sampling techniques in deconvolution, in J. Benedetto and P. Ferreira, eds., Modern Sampling Theory, Birkhäuser, Boston, 2001, 193–218.

    Google Scholar 

  20. K. M. Flornes, Y. Lyubarskii, and K. Seip, A direct interpolation method for irregular sampling, Appl. Comput. Harmonic Anal, 7-3 (1999), 305–314.

    Article  MATH  MathSciNet  Google Scholar 

  21. I. Gohberg and M. Krein, Introduction to the Theory of Linear Nonselfadjoint Operators, Americal Mathematical Society, Providence, RI, 1969.

    MATH  Google Scholar 

  22. K. Gröchenig, C. Heil, and D. Walnut, Nonperiodic sampling and the local three squares theorem, Ark. Mat., 38 (2000), 77–92.

    Article  MATH  MathSciNet  Google Scholar 

  23. J. R. Higgins, Sampling Theory in Fourier and Signal Analysis, Clarendon Press, Oxford, UK, 1996.

    MATH  Google Scholar 

  24. L. Hörmander, Generators for some rings of analytic functions, Bull. Amer. Math. Soc., 73 (1967), 943–949.

    Article  MATH  MathSciNet  Google Scholar 

  25. S. V. Hruščev, N. K. Nikol’skii, and B. S. Pavlov, Unconditional basees of exponentials and of reproducing kernels, in V. P. Havin and N. K. Nikol’skii, eds., Complex Analysis and Spectral Theory: Seminar, Leningrad, 1979/80, Lecture Notes in Mathematics 864, Springer-Verlag, Berlin, New York, Heidelberg, 1981, 214–335.

    Google Scholar 

  26. B. Y. Levin, On bases of exponential functions in L 2, Zap. Mekh.-Mat. Fak. i Khar’kov. Mat. Obshch., 27 (1961), 39–48 (in Russian).

    Google Scholar 

  27. B. Y Levin, Distribution of Zeros of Entire Functions, American Mathematical Society, Providence, RI, 1980.

    Google Scholar 

  28. B. Y Levin, Lectures on Entire Functions, American Mathematical Society, Providence, RI, 1996.

    MATH  Google Scholar 

  29. N. Levinson, Gap and Density Theorems, American Mathematical Society Colloquium Publications 26, American Mathematical Society, Providence, RI, 1940.

    Google Scholar 

  30. B. Q. Li and B. A. Taylor, On the Bézout problem and area of interpolating varieties in Cn, Amer. J. Math., 118-5 (1996), 989–1010.

    Article  MATH  MathSciNet  Google Scholar 

  31. B. Q. Li, On the Bézout problem and area of interpolating varieties in Cn II, Amer. J. Math., 120-6 (1998), 1191–1198.

    Article  MATH  MathSciNet  Google Scholar 

  32. B. Q. Li and E. Villamor, Interpolating multiplicity varieties in Cn, J. Geom. Anal., 11-1 (2001), 91–101.

    MATH  MathSciNet  Google Scholar 

  33. B. Q. Li and E. Villamor, Interpolation in the unit ball of Cn, Israel J. Math., 123 (2001), 341–358.

    Article  MATH  MathSciNet  Google Scholar 

  34. Y Lyubarskii and K. Seip, Complete interpolating sequences for Paley-Wiener spaces and Muckenhoupt’s (A p) condition, Rev. Mat. Iberoamericana, 13-2 (1997), 361–376.

    MATH  MathSciNet  Google Scholar 

  35. Y Lyubarskii and K. Seip, Sampling and interpolating sequences for multiband-limited functions and exponential bases on disconnected sets, J. Fourier Anal. Appl., 3-5 (1997) (dedicated to the memory of Richard J. Duffin), 597–615.

    Article  MATH  MathSciNet  Google Scholar 

  36. E. M. Maghras, Restitution des coefficients d’ondellette des signaux filtrés, Colloq. Math., 68-2 (1995), 265–283.

    MATH  MathSciNet  Google Scholar 

  37. G. Meisters and E. Petersen, Non-Liouville numbers and a theorem of Hörmander, J. Functional Anal, 29 (1978), 142–150.

    Article  MATH  MathSciNet  Google Scholar 

  38. N. K. Nikol’skii, Treatise on the Shift Operator, Springer-Verlag, Berlin, New York, Heidelberg, 1985.

    Google Scholar 

  39. R. E. A. C. Paley and N. Wiener, Fourier Transforms in the Complex Domain, American Mathematical Society, Providence, RI, 1934.

    MATH  Google Scholar 

  40. B. S. Pavlov, Basicity of an exponential system and Muckenhoupt’s condition, Soviet Math. Dokl., 20-4 (1979), 655–659.

    MATH  Google Scholar 

  41. B. Rom and D. Walnut, Sampling and interpolation on unions of shifted lattices in one dimension, in C. Heil, ed., Harmonic Analysis and Applications: A Volume in Honor of John Benedetto’s 65th Birthday, Birkhäuser, Boston, 2005.

    Google Scholar 

  42. D. Walnut, Solutions to deconvolution equations using nonperiodic sampling, J. Fourier Anal. Appl., 4-6 (1998), 669–709.

    Article  MATH  MathSciNet  Google Scholar 

  43. R. Young, An Introduction to Nonharmonic Fourier Series, 1st ed., Academic Press, New York, 1980.

    MATH  Google Scholar 

  44. R. Young, An Introduction to Nonharmonic Fourier Series, revised 1st ed., Academic Press, New York, 2001.

    MATH  Google Scholar 

  45. L. Zalcman, Analyticity and the Pompeiu problem, Arch. Rational Mech. Anal., 47 (1972), 237–254.

    Article  MATH  MathSciNet  Google Scholar 

  46. L. Zalcman, Offbeat integral geometry, Amer. Math. Monthly, 87 (1980, 161–175).

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Birkhäuser Boston

About this paper

Cite this paper

Walnut, D.F. (2005). Sampling and Local Deconvolution. In: Sabadini, I., Struppa, D.C., Walnut, D.F. (eds) Harmonic Analysis, Signal Processing, and Complexity. Progress in Mathematics, vol 238. Birkhäuser Boston. https://doi.org/10.1007/0-8176-4416-4_8

Download citation

Publish with us

Policies and ethics