Skip to main content

Calculation of the Density Profile of Liquid Located in the Multi-Walled Carbon Nanotube

  • Conference paper
Frontiers of Multifunctional Integrated Nanosystems

Abstract

The density profile of liquid located in a multi-walled carbon nanotube was calculated using the solution to the isoperimetrical problem of the minimization of a free energy of the system in the limited volume for the constant number of particles. It was shown that far from the critical point a substantial change in the density occurs only in the near-wall layer, whereas near the critical point a significant change of density takes place in the entire volume of the liquid.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Iijima, S. Helical Microtubes of Graphite Carbon. Nature 354, 56–58 (1991).

    Article  ADS  Google Scholar 

  2. Harris, P. J. F. Carbon Nanotubes and Related Structures (Cambridge University Press, Cambridge, 1999).

    Book  Google Scholar 

  3. Baughman, R. H., Zakhidov, A. A. & Heer, W. A. d. Carbon Nanotubes — the Route Toward Applications. Science 297, 787–792 (2002).

    Article  ADS  Google Scholar 

  4. Galanov, B. A., Galanov, S. B. & Gogotsi, Y. Stress-strain State of Multiwall Carbon Nanotube under Internal Pressure. J. Nanoparticle Research 4, 207–214 (2002).

    Article  Google Scholar 

  5. S. Ghosh, Sood, A. K. & Kumar, N. Carbon Nanotube Flow Sensors. Science 299, 1042–1044 (2003).

    Article  ADS  Google Scholar 

  6. Sobolev, V. D., Churaev, N. V., Verlade, M. G. & Zorin, Z. M. Surface Tension and Dynamic Contact Angle of Water in Thin Quartz Capillaries. J. Colloid Interface Sci 222, 51–54 (2000).

    Article  Google Scholar 

  7. Bogomolov, V. N. Capillary Effects in Ultrathin Channels. Sov. Phys. Tech. Phys. 37, 79–82 (1992).

    Google Scholar 

  8. Monthioux, M. Filling Single-wall Carbon Nanotubes. Carbon 40, 1809–1823 (2002).

    Article  Google Scholar 

  9. Ajayan, P. M. & Iijima, S. Capilllarity-induced Filling of Carbon Nanotubes. Nature 361, 333–334 (1993).

    Article  ADS  Google Scholar 

  10. Ugarte, D., Chatelain, A. & DeHeer, W. A. Nanocapillarity and Chemistry in Carbon Nanotubes. Science 274, 1897–1899 (1996).

    Article  ADS  Google Scholar 

  11. Megaridis, C. M., Güvenç-Yazicioglu, A., Libera, J. A. & Gogotsi, Y. Attoliter Fluid Experiments in Individual Closed-end Carbon Nanotubes: Liquid Film and Fluid Interface Dynamics. Physics of Fluids 14, L5–L8 (2002).

    Article  ADS  Google Scholar 

  12. Gogotsi, Y., Libera, J. A., Güvenç-Yazicioglu, A. & Megaridis, C. M. In-situ Fluid Experiments in Carbon Nanotubes. Materials Research Society Meeting Proceedings 633, A7.4.1–A7.4.6 (2001).

    Google Scholar 

  13. Gogotsi, Y., Libera, J. A., Güvenç-Yazicioglu, A. & Megaridis, C. M. In-situ Multi-phase Fluid Experiments in Hydrothermal Carbon Nanotubes. Applied Physics Letters 79, 1021–1023 (2001).

    Article  ADS  Google Scholar 

  14. Derjaguin, B. V., Churaev, N. V. & Muller, V. M. Surface Forces (Nauka, Moscow, 1985).

    Google Scholar 

  15. Derjaguin, B. V. & Churaev, N. V. Wetting Films (Nauka, Moscow, 1984).

    Google Scholar 

  16. Rivera, J. L., McCabe, C. & Cummings, P. T. Layering Behavior and Axial Phase Equilibria of Pure Water and Water + Carbon Dioxide Inside Single Wall Carbon Nanotubes. Nano Lett. 2, 1427–1431 (2002).

    Article  ADS  Google Scholar 

  17. Roullinson, J. & Uidom, B. Molecular Theory of Capillarity (Mir, Moscow, 1986).

    Google Scholar 

  18. Bulavin, L. A., Gavryushenko, D. A. & Sysoev, V. M. Calculation of the Density Profile of Liquid in the Limited System Near the Critical Isochor in the Gravitational Field. J. Phys. Chem. B 70, 2102 (1996).

    Google Scholar 

  19. Lavrentev, M. A. & Lyusternik, L. A. Course of the Calculus of Variations (Nauka, Moscow, 1983).

    Google Scholar 

  20. Derjaguin, B. V., Popovski, Y. M. & Altoiz, B. A. Liquid-Crystalline State of the Wall-Adjacent Layers of Some Polar Liquids. J. Colloid and Interface Science 96, 492–503 (1983).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Kluwer Academic Publishers

About this paper

Cite this paper

Gavryushenko, D.A. et al. (2004). Calculation of the Density Profile of Liquid Located in the Multi-Walled Carbon Nanotube. In: Buzaneva, E., Scharff, P. (eds) Frontiers of Multifunctional Integrated Nanosystems. NATO Science Series II: Mathematics, Physics and Chemistry, vol 152. Springer, Dordrecht. https://doi.org/10.1007/1-4020-2173-9_4

Download citation

Publish with us

Policies and ethics