Skip to main content

Part of the book series: NATO Science Series II: Mathematics, Physics and Chemistry ((NAII,volume 154))

  • 330 Accesses

Abstract

The dissipative quantum dynamics of the central island of a nanoelectromechanical single-electron transistor is studied at high bias voltage and zero temperature. The equation of motion for the reduced density operator describing the vibrational degree of freedom is derived. It is shown that when the dissipation is below a certain threshold value, the vibrational ground state of the central island is unstable. If the electric field E between the leads is much greater then a characteristic value, it is shown that the instability develops into a steady-state solution that corresponds to the quasiclassical shuttle picture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. L. Roukes, Physics World 14, 25 (2001).

    CAS  Google Scholar 

  2. H. G. Craighead, Science 290, 1532 (2000).

    Article  CAS  ADS  PubMed  Google Scholar 

  3. A. N. Cleland, Foundations of Nanomechanics, Springer Verlag (2003).

    Google Scholar 

  4. L. Y. Gorelik, A. Isacsson, M. V. Voinova, B. Kasemo, R. I. Shekhter, and M. Jonson, Phys. Rev. Lett. 80, 4526 (1998); A. Isacsson, L. Y. Gorelik, M. V. Voinova, B. Kasemo, R. I. Shekhter, and M. Jonson, Physica B 255, 150 (1998).

    Article  CAS  ADS  Google Scholar 

  5. N. Nishiguchi, Phys. Rev. B 65, 035403 (2001).

    Article  ADS  Google Scholar 

  6. D. Boese and H. Schoeller, Europhys. Lett., 54, 668 (2001).

    Article  CAS  ADS  Google Scholar 

  7. D. Fedorets, L. Y. Gorelik, R. I. Shekhter, and M. Jonson, Europhys. Lett. 58, 99 (2002).

    Article  CAS  ADS  Google Scholar 

  8. D. Fedorets, L. Y. Gorelik, R. I. Shekhter, and M. Jonson, cond-mat/0212561 (unpublished).

    Google Scholar 

  9. D. Fedorets, Phys. Rev. B 68, 033106 (2003).

    Article  ADS  Google Scholar 

  10. D. Fedorets, L. Y. Gorelik, R. I. Shekhter, and M. Jonson, cond-mat/0311105 (unpublished).

    Google Scholar 

  11. K. D. McCarthy, N. Prokof’ev, and M. T. Tuominen, Phys. Rev. B 67, 245415 (2003).

    Article  ADS  Google Scholar 

  12. T. Nord, L. Y. Gorelik, R. I. Shekhter, and M. Jonson, Phys. Rev. B 65, 165312 (2002).

    Article  ADS  Google Scholar 

  13. A. D. Armour and A. MacKinnon, Phys. Rev. B 66, 035333 (2002).

    Article  ADS  Google Scholar 

  14. A. S. Alexandrov and A. M. Bratkovsky, Phys. Rev. B, 67, 235312 (2003).

    Article  ADS  Google Scholar 

  15. Jian-Xin Zhu and A. V. Balatsky, Phys. Rev. B, 67, 165326 (2003).

    Article  ADS  Google Scholar 

  16. T. Novotny, A. Donarini, and A.-P. Jauho, Phys. Rev. Lett. 90, 256801 (2003).

    Article  ADS  PubMed  Google Scholar 

  17. A. Mitra, I. Aleiner, and A. J. Millis, cond-mat/0302132 (unpublished).

    Google Scholar 

  18. V. Aji, J. E. Moore, and C. M. Varma, cond-mat/0302222 (unpublished).

    Google Scholar 

  19. R. Lü, cond-mat/0303338 (unpublished).

    Google Scholar 

  20. K. Flensberg, Phys. Rev. B 68, 205323 (2003); S. Braig and K. Flensberg, Phys. Rev. B 68, 205324 (2003).

    Article  ADS  Google Scholar 

  21. H. Park, J. Park, A. K. L. Lim, E. H. Anderson, A. P. Alivisatos, and P. L. McEuen, Nature 407, 57 (2000).

    Article  ADS  PubMed  Google Scholar 

  22. A. Erbe, C. Weiss, W. Zwerger, and R. H. Blick, Phys. Rev. Lett. 87, 096106 (2001).

    Article  CAS  ADS  PubMed  Google Scholar 

  23. R. I. Shekhter, Yu. M. Galperin, L. Y. Gorelik, A. Isacsson and M. Jonson, J. Phys. C 15, R441 (2003).

    CAS  Google Scholar 

  24. C. W. Gardiner and P. Zoller, Quantum Noise, Springer Verlag, 2nd Edition.

    Google Scholar 

  25. U. Weiss, Quantum Dissipative Systems, 2nd ed, Series in Modern Condensed Matter Physics Vol. 10, World Scientific, Singapore (1999).

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Kluwer Academic Publishers

About this chapter

Cite this chapter

Fedorets, D., Gorelik, L.Y., Shekhter, R.I., Jonson, M. (2004). Quantum Precursor of Shuttle Instability. In: Lerner, I.V., Altshuler, B.L., Gefen, Y. (eds) Fundamental Problems of Mesoscopic Physics. NATO Science Series II: Mathematics, Physics and Chemistry, vol 154. Springer, Dordrecht. https://doi.org/10.1007/1-4020-2193-3_5

Download citation

  • DOI: https://doi.org/10.1007/1-4020-2193-3_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-2192-3

  • Online ISBN: 978-1-4020-2193-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics