Skip to main content

Part of the book series: NATO Science Series ((NAII,volume 182))

  • 782 Accesses

Abstract

The purpose of this paper is to survey shortly some notions in the spectral theory of ergodic dynamical systems and their relevance to mixing and weak mixing. In addition, we present some dynamical systems of particles submitted to collisions with nondispersive obstacles and their ergodic and spectral properties. Transport is formulated in terms of random walk generated by deterministic dynamical systems and their moments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. Beck and G. Roepstorff, From dynamical systems to the Langevin equation, Physica A, 145, 1–14, 1987.

    Article  Google Scholar 

  2. P. Billingsley, Probability and measure, Wiley, NY, 1986

    Google Scholar 

  3. P. Billingsley, Convergence of probability measures, Wiley, 1968

    Google Scholar 

  4. M. Bernardo, M. Courbage, T.T. Truong, Multidimensional gaussian sums arising from distributions of sums of pairwise independent sequence of zero entropy, preprint LPTMC, and, Random walks generated by area preserving maps with zero Lyapounov exponents, Communications in Nonlinear Science and Numerical Simulations, 8, 189–199 (2003).

    Article  Google Scholar 

  5. L.A. Bunimovich, Ya. G. Sinai, Statistical properties of Lorentz gas with periodic configuration of scatterers. Comm. Math. Phys. 78, 1981, 479–497.

    Google Scholar 

  6. L. A. Bunimovich, Ya. G. Sinai, N. I. Chernov, Markov partitions for two-dimensional hyperbolic billiards. (Russian) Uspekhi Mat. Nauk. 45, 1990, no. 3 (273), 97–134; translation in Russian Math. Surveys, 45, 1990, no. 3, 105–152

    Google Scholar 

  7. B. Burton and M. Denker, On the central limit theorem for dynamical systems, Trans. Amer. Math. Soc. 302, 121–134

    Google Scholar 

  8. N.I. Chernov, L.S. Young, Decay of correlations for Lorentz gases and hard balls. Hard ball systems and the Lorentz gas, 89–120, Encyclopaedia Math. Sci., 101, Springer, Berlin, 2000.

    Google Scholar 

  9. P. Collet, A short ergodic theory refresher, in this volume.

    Google Scholar 

  10. I.P. Cornfeld, S.V. Fomin, Ya.G. Sinai, ”Ergodic theory”, Springer, New York, (1981).

    Google Scholar 

  11. M. Courbage, D. Hamdan, Decay of Correlation and mixing properties in a dynamical system with zero entropy. Ergod. Th. Dynam. Syst. 17, no.1, 87–103, 1997.

    Article  Google Scholar 

  12. M. Courbage, D. Hamdan, Unpredictability in some nonchaotic dynamical systems, Phys. Rev. Lett. 74, 5166–5169, 1995.

    Article  PubMed  Google Scholar 

  13. G.R. Goodson, A survey of recent results in the spectral theory of ergodic dynamical systems, J. Dynam. Control Systems, 5, 173–226, 1999.

    Article  Google Scholar 

  14. P.R. Halmos, Lectures in Ergodic Theory Chelsea Publishing Company, NY, 1956

    Google Scholar 

  15. E.H. Hauge, What can we learn from Lorentz models, in G. Kirczenow and J. Marro ed., Transport phenomena, p.337, Springer, 1974.

    Google Scholar 

  16. E. Hopf, Proof of Gibbs hypothesis Proc.Natl. Acad. Sci. U.S.A. 18, 333–340, 1932.

    Google Scholar 

  17. I.A. Ibragimov, Some limit theorems for stationary processes, Theory Prob. Appl., 7, 349–382, 1962.

    Article  Google Scholar 

  18. B.O. Koopman, Hamiltonian systems and transformations in Hilbert space, Proc.Natl. Acad. Sci. U.S.A. 17, 315–318, 1931.

    Google Scholar 

  19. B.O. Koopman and J. von Neumann, Dynamical systems and continuous spectra, Proc.Natl. Acad. Sci. U.S.A. 18, 255–263, 1932.

    Google Scholar 

  20. Michael T. Lacey, On weak convergence in dynamical systems to self-similar processes with spectral representation, Trans.Amer. Math. Soc. 328, 767–778, 1991.

    Google Scholar 

  21. C. Liverani ”Central limit for deterministic systems.” in: International Conference on Dynamical Systems (Montevideo, 1995), 56–75, Pitman Res. Notes Math. Ser., 362, Longman, Harlow, 1996.

    Google Scholar 

  22. Donald S., Ornstein, Ergodic theory, randomness, and dynamical systems. Yale University Press, New Haven.

    Google Scholar 

  23. K. Petersen, Ergodic Theory, Cambridge University Press, 1983.

    Google Scholar 

  24. Martine Queffelec, Substitution Dynamical Systems-Spectral Analysis. LNM 1294, Springer-Verlag 1987.

    Google Scholar 

  25. M.E. Ratner, A central limit theorem for Y-flows on three-dimensional manifolds, Dokl. Akad. Nauk. SSSR, 186, 1969, 519–521, English translation: Soviet. Math. Dokl., 10, 629–631, 1969.

    Google Scholar 

  26. Ya.G. Sinai, The central limit theorem for geodesic flows on manifold with negative constant curvature, Soviet. Math. 1, 983–986, 1960.

    Google Scholar 

  27. G.M. Zaslavsky and E. Edelman, Weak mixing and anomalous kinetics along filamented surfaces, CHAOS, 11, 295–305, 2001.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Kluwer Academic Publishers

About this paper

Cite this paper

Courbage, M. (2005). Notes on Spectral Theory, Mixing and Transport. In: Collet, P., Courbage, M., Métens, S., Neishtadt, A., Zaslavsky, G. (eds) Chaotic Dynamics and Transport in Classical and Quantum Systems. NATO Science Series, vol 182. Springer, Dordrecht. https://doi.org/10.1007/1-4020-2947-0_2

Download citation

Publish with us

Policies and ethics