Skip to main content

Part of the book series: NATO Science Series II: Mathematics, Physics and Chemistry ((NAII,volume 186))

  • 1857 Accesses

Abstract

Understanding the behavior of complex materials such as organic self-assembled monolayers, molecular and nano wires, transition metal oxide thin films, is facilitated by probes of local properties. Recent extensions of scanning probe microscopy that extract electrical potential, capacitance, dielectric constant, electromechanical coupling coefficients and impedance, are described. In most cases, these complex properties are accessed by stimulations and/or response function detection with multiple frequency modulations. Several illustrative example include determination of the electronic structure of individual defects in a carbon nanotube, ferroelectric domain interactions in oxide thin films, and electric potential of an alkanethiol on metal.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. As determined from COMPENDEX for 2002

    Google Scholar 

  2. Bonnell D.A. (ed.) (2000) Scanning probe microscopy and spectroscopy: theory, techniques and applications, 2nd edn, New York: Wiley VCH.

    Google Scholar 

  3. Wiesendanger R. ((ed.) 1994) Scanning probe microscopy and spectroscopy-methods and applications, Cambridge University Press, Cambridge, UK.

    Google Scholar 

  4. Friedbacher, G., Fuchs, H. (1999) Classification of scanning probe microscopies — (technical report), Pure and applied chemistry 71, 1337–1357.

    Article  Google Scholar 

  5. Bottomley, L. (1998) Scanning Probe Microscopy. Anal Chem 70, 425R–475R (and the references therein).

    Article  Google Scholar 

  6. Israelachvili, J.N. (1992) Intermolecular and Surface Forces, Academic Press, New York.

    Google Scholar 

  7. Hartmann, U. (1989) The point dipole approximation in magnetic force microscopy. Phys. Lett. A 137, 475–478.

    ADS  Google Scholar 

  8. Hartmann, U. (1999) Magnetic force microscopy, Annu. Rev. Mater. Sci. 29, 53–87.

    Article  ADS  Google Scholar 

  9. Yongsunthon, R., Stanishevsky, A., Williams, E.D., and Rous, P.J. (2003) Mapping electron flow using magnetic force microscopy, Appl. Phys. Lett. 82, 3287–3289.

    Article  ADS  Google Scholar 

  10. Yongsunthon, R., Stanishevsky, A., Williams, E.D., et al. (2002) Test of response linearity for magnetic force microscopy data, J. Appl. Phys. 92, 1256–1261.

    Article  ADS  Google Scholar 

  11. Alvarez, T., Kalinin, S.V., Bonnell, D.A. (2001) Magnetic-field measurements of current-carrying devices by force-sensitive magnetic-force microscopy with potential correction, Appl. Phys. Lett. 78, 1005–1007.

    Article  ADS  Google Scholar 

  12. De Wolf, P., Stephenson, R., Trenkler, T., Clarysse, T., Hantschel, T., and Vandervorst, W. (2000) Status and review of two-dimensional carrier and dopant profiling using scanning probe microscopy, J. Vac. Sci. Technol. B 18, 361–368.

    Google Scholar 

  13. De Wolf, P., Snauwaert, J., Hellemans, L., Clarysse, T., Vandervorst, W., D'Olieslaeger, M., and Quaeyhaegens D. (1995) Lateral and vertical dopant profiling in semiconductors by atomic force microscopy using conducting tips, J. Vac. Sci. Technol. A 13, 1699–1704.

    ADS  Google Scholar 

  14. De Wolf, P., Clarysse, T., and Vandervorst, W. (1998) Low weight spreading resistance profiling of ultrashallow dopant profiles, J. Vac. Sci. Technol. B 16, 401–405.

    Google Scholar 

  15. Matey, J.R. and Blanc, J. (1985) Scanning capacitance microscopy, J. Appl. Phys. 57, 1437–1444.

    Article  ADS  Google Scholar 

  16. Barrett, R.C. and Quate, C.F. (1991) Charge storage in a nitride-oxide-silicon medium by scanning capacitance microscopy, J. Appl. Phys. 70, 2725–2733.

    Article  ADS  Google Scholar 

  17. Huang, Y., Williams, C.C., and Wendman, M.A. (1996) Quantitative two-dimensional dopant profiling of abrupt dopant profiles by cross-sectional scanning capacitance microscopy, J. Vac. Sci. Technol. A 14, 1168–1171.

    ADS  Google Scholar 

  18. Hantschel, T., Niedermann, P., Trenkler, T., and Vandervorst, W. (2000) Highly conductive diamond probes for scanning spreading resistance microscopy, Appl. Phys. Lett. 76, 1603–1605.

    Article  ADS  Google Scholar 

  19. Marchiando, J.T. and Kopanski, J.J. (2002) Regression procedure for determining the dopant profile in semiconductors from scanning capacitance microscopy data, J. Appl. Phys. 92, 5798–5809.

    Article  ADS  Google Scholar 

  20. Yang, J. and Kong, F.C.J. (2002) Simulation of interface states effect on the scanning capacitance microscopy measurement of p-n junctions, Appl. Phys. Lett. 81, 4973–4975.

    Article  ADS  Google Scholar 

  21. Lányi, S., Török, J., and Rehurek, P. (1996) Imaging conducting surfaces and dielectric films by a scanning capacitance microscope, J. Vac. Sci. Technol. B 14, 892–896.

    Google Scholar 

  22. Belaidi, S., Girard, P., and Leveque, G. (1997) Electrostatic forces acting on the tip in atomic force microscopy: modelization and comparison with analytic expressions, J. Appl. Phys. 81, 1023–1030.

    Article  ADS  Google Scholar 

  23. Edwards, H., McGlothlin, R., San Martin, R., U, E., Gribelyuk M., et al. (1998) Scanning capacitance spectroscopy: an analytical technique for pn-junction delineation in Si devices, Appl. Phys. Lett. 72, 698–700.

    Article  ADS  Google Scholar 

  24. Viscoly-Fisher, I., Cohen, S.R., and Cahen, A. (2003) Direct evidence for grain-boundary depletion in polycrystalline CdTe from nanoscale-resolved measurements, Appl. Phys. Lett. 82, 556–558.

    Article  ADS  Google Scholar 

  25. Tran, T., Oliver, D.R., Thompson, D.J., and Bridges, G.E. (2002) Capacitance sensor with sub-zeptofarad (<10−21 F) sensitivity for scanning capacitance microscopy, J. Vac. Sci. Technol. B 20, 479–482.

    Google Scholar 

  26. Kobayashi, K., Yamada, H., and Matsushige, K. (2002) Dopant profiling on semiconducting sample by scanning capacitance force microscopy, Appl. Phys. Lett. 81, 2629–2631.

    Article  ADS  Google Scholar 

  27. Weaver, J.M.R. and Abraham, D.W. (1991) High resolution atomic force microscopy potentiometry, J. Vac. Sci. Technol. B 9, 1559–1561.

    Google Scholar 

  28. Nonnenmacher, M., O'Boyle, M.P., and Wickramasinghe, H.K. (1991) Kelvin probe force microscopy, Appl. Phys. Lett. 58, 2921–2923.

    Article  ADS  Google Scholar 

  29. Henning, A.K. and Hochwitz, T. (1996) Scanning probe microscopy for 2-D semiconductor dopant profiling and device failure analysis, Mater. Sci. Eng. B-Solid State 42, 88–98.

    Article  Google Scholar 

  30. Jacobs, H.O., Leuchtmann, P., Homan, O.J., and Stemmer, A. (1998) Resolution and contrast in Kelvin probe force microscopy, J. Appl. Phys. 84, 1168–1173.

    Article  ADS  Google Scholar 

  31. Cohen, S. and Efimov, A. (1999) Proceedings of STM'99, ed. Kuk Y, Lyo IW, Jeon D, Park S.I. 554.

    Google Scholar 

  32. Kalinin, S.V. and Bonnell, D.A. (2001) Local potential and polarization screening on ferroelectric surfaces. Phys. Rev. B 63, 1254111–12541113.

    Google Scholar 

  33. Cunningham, S., Larkin, I.A., and Davis, J.H. (1998) Noncontact scanning probe microscope potentiometry of surface charge patches: origin and interpretation of time-dependent signals, Appl. Phys. Lett. 73, 123–125.

    Article  ADS  Google Scholar 

  34. Franke, K., Huelz, H., and Weihnacht, M. (1998) How to extract spontaneous polarization information from experimental data in electric force microscopy, Surf. Sci. 415, 178–182.

    Article  ADS  Google Scholar 

  35. Kalinin, S.V. and Bonnell, D.A. (2003) J. Appl. Phys. in print.

    Google Scholar 

  36. Donolato, C. (1996) Electrostatic tip-sample interaction in immersion force microscopy of semiconductors, Phys. Rev. B 54, 1478–1481.

    ADS  Google Scholar 

  37. Leng, Y., Williams, C.C., Su, L.C., and Stringfellow, G.B. (1995) Atomic ordering of GaInP studied by Kelvin probe force microscopy. Appl. Phys. Lett. 66, 1264–1266.

    Article  ADS  Google Scholar 

  38. Tanimoto, M. and Vatel, O. (1996) Kelvin probe force microscopy for characterization of semiconductor devices and processes, J. Vac. Sci. Technol. B 14, 1547–1551.

    Google Scholar 

  39. Hochwitz, T., Henning, A.K., Levey, C., Daghlian, C., Slinkman, J., et al. (1996) Imaging integrated circuit dopant profiles with the force-based scanning Kelvin probe microscope, J. Vac. Sci. Technol. B 14, 440–446.

    Google Scholar 

  40. Fujihira, M. (1999) Kelvin probe force microscopy of molecular surfaces, Annu. Rev. Mater. Sci. 12, 353–380.

    Article  ADS  Google Scholar 

  41. Chen, X.Q., Yamada, H., Horiuchi, T., Matsushige, K., Watanabe, S., Kawai, M., and Weiss, P.S. (1999) Surface potential of ferroelectric thin films investigated by scanning probe microscopy, J. Vac. Sci. Technol. B 17, 1930–1934.

    Google Scholar 

  42. Tybell, T., Ahn, C.H., and Triscone, J-M. (1999) Ferroelectricity in thin perovskite films, Appl. Phys. Lett 75, 856–858.

    Article  ADS  Google Scholar 

  43. Bridger, P.M., Bandic, Z.Z., Piquette, E.C., and McGill, T.C. (1999) Measurement of induced surface charges, contact potentials, and surface states in GaN by electric force microscopy, Appl. Phys. Lett. 74, 3522–3524.

    Article  ADS  Google Scholar 

  44. Xu, Q. and Hsu, J.W.P. (1999) Electrostatic force microscopy studies of surface defects on GaAs/Ge films, J. Appl. Phys. 85, 2465–2472.

    Article  ADS  Google Scholar 

  45. Chavez-Pirson, A., Vatel, O., Tanimoto, M., Ando, H., Iwamura, H., and Kanbe, H. (1995) Nanometer-scale imaging of potential profiles in optically excited n-i-p-i heterostructure using Kelvin probe force microscopy, Appl. Phys. Lett. 67, 3069–3071.

    Article  ADS  Google Scholar 

  46. Meoded, T., Shikler, R., Fried, N., and Rosenwaks, Y. (1999) Direct measurement of minority carriers diffusion length using Kelvin probe force microscopy, Appl. Phys. Lett. 75, 2435–2437.

    Article  ADS  Google Scholar 

  47. Kalinin, S.V. and Bonnell, D.A. (1999) Dynamic behavior of domain-related topography and surface potential on the BaTiO3 (100) surface by variable temperature scanning surface potential microscopy, Z. Metallkd. 90, 983–989.

    Google Scholar 

  48. Luo, E.Z., Xie, Z., Xu, J.B., Wilson, I.H., and Zhao, L.H. (2000) In situ observation of the ferroelectric-paraelectric phase transition in a triglycine sulfate single crystal by variable-temperature electrostatic force microscopy, Phys. Rev. B 61, 203–206.

    ADS  Google Scholar 

  49. Lü, J., Delamarche, E., Eng, L., Bennewitz, R., Meyer, E., and Güntherodt, H-J. (1999) Kelvin probe force microscopy on surfaces: investigation of the surface potential of self-assembled monolayers on gold, Langmuir 15, 8184–8188.

    Article  Google Scholar 

  50. Getty, R.R., Alvarez, R., Bonnell, D.A., et al. (2002) Materials Research Society Symposium — Proceedings 727, 155–160.

    Google Scholar 

  51. Kalinin, S.V. and Bonnell, D.A. (2001) Scanning impedance microscopy of electroactive interfaces, Appl. Phys. Lett. 78, 1306–1308.

    Article  ADS  Google Scholar 

  52. Kalinin, S.V. and Bonnell, D.A. (2003) Nonlinear dielectric properties at oxide grain boundaries. Z. Metallkd. 94, 188–192.

    Google Scholar 

  53. Kalinin, S.V., Bonnell, D.A., Freitag, and M., Johnson, A.T. (2002) Tip-gating effect in scanning impedance microscopy of nanoelectronic devices, Appl. Phys. Lett. 81, 5219–5221.

    Article  ADS  Google Scholar 

  54. Bonnell D.A., Kalinin S.V. this volume

    Google Scholar 

  55. Shao, R., Kalinin, S.V., and Bonnell, D.A. () Local impedance imaging and spectroscopy of polycrystalline ZnO using contact atomic force microscopy, Appl. Phys. Lett. 82, 1869–1871.

    Google Scholar 

  56. Eriksson, M.A., Beck, R.G., Topinka, M., Katine, J.A., Westervelt, R.M., Campman, K.L., and Gossard, A.C. (1996) Cryogenic scanning probe characterization of semiconductor nanostructures, Appl. Phys. Lett. 69, 671–673.

    Article  ADS  Google Scholar 

  57. Bachtold, A., Fuhrer, M.S., Plyasunov, S., Forero, M., Anderson, E.H., Zettl, A., and McEuen, P.L. (2000) Scanned Probe Microscopy of Electronic Transport in Carbon Nanotubes, Phys. Rev. Lett. 84, 6082–6085.

    Article  ADS  Google Scholar 

  58. Tans, S.J. and Dekker, C. (2000) Molecular transistors — potential modulations along carbon nanotubes, Nature 404, 834–835.

    Article  ADS  Google Scholar 

  59. Freitag, M., Radosavljevic, M., Clauss, A., and Johnson, T. (2000) Phys. Rev. B 62, R2307–R2310.

    ADS  Google Scholar 

  60. Durkan, C., and Welland, M.E. (2000) Investigations into local ferroelectric properties by atomic force microscopy, Ultramicroscopy 82, 141–148.

    Article  Google Scholar 

  61. Gruverman, A., Kolosov, O., Hatano, J., Takahashi, K., and Tokumoto, H. (1995) Domain structure and polarization reversal in ferroelectrics studied by atomic force microscopy, J. Vac. Sci. Technol. B 13, 1095–1099.

    Google Scholar 

  62. Kalinin, S.V. and Bonnell, D.A. (2002) Imaging mechanism of piezoresponse force microscopy of ferroelectric surfaces. Phys. Rev. B 65, 1254081–12540811.

    Google Scholar 

  63. Eng, L.M., Guentherodt. H.J., Schneider. G.A., Kopke. U., and Munoz Saldana. J. (1999) Nanoscale reconstruction of surface crystallography from three-dimensional polarization distribution in ferroelectric barium-titanate ceramics, Appl. Phys. Lett. 74, 233–235.

    Article  ADS  Google Scholar 

  64. Roelofs, A., Boettger, U., Waser, R., Schlaphof, F., Trogisch, S., and Eng, L.M. (2000) Differentiating 180° and 90° switching of ferroelectric domains with three-dimensional piezoresponse force microscopy, Appl. Phys. Lett. 77, 3444–3446.

    Article  ADS  Google Scholar 

  65. Harnagea, C., Pignolet, A., Alexe, M., and Hesse, D. (2001) Piezoresponse scanning force microscopy: what quantitative information can we really get out the piezoresponse measurements on ferroelectric thin films, Integr. Ferroelectr. 38, 23–29.

    Article  Google Scholar 

  66. Shao, R. and Bonnell, D.A. (2003) unpublished.

    Google Scholar 

  67. Gao, C. and Xiang, X.D. (1998) Quantitative microwave near-field microscopy of dielectric properties, Rev. Sci. Instrum. 69, 3846–3851.

    Article  ADS  Google Scholar 

  68. Cho, Y., Kirihara, A., and Saeki, T. (1996) Scanning nonlinear dielectric microscope, Rev. Sci. Instrum. 67, 2297–2303.

    Article  ADS  Google Scholar 

  69. Steinhauer, D.E., Vlahacos, C.P., Wellstood, F.C., Anlage, S.M., Canedy, C., Ramesh, R., Stanishevsky, A., and Melngailis, J. (1999) Imaging of microwave permittivity, tunability, and damage recovery in (Ba, Sr)TiO3 thin films, Appl. Phys. Lett. 75, 3180–3182.

    Article  ADS  Google Scholar 

  70. Steinhauer, D.E., Vlahacos, C.P., Dutta, S.K., Wellstood, F.C., and Anlage, S.M. (1997) Surface resistance imaging with a scanning near-field microwave microscope, Appl. Phys. Lett. 71, 1736–1738.

    Article  ADS  Google Scholar 

  71. Lee, S.C. and Anlage, S.M. (2003) Spatially-resolved nonlinearity measurements of YBa2Cu3O7−δ bicrystal grain boundaries, Appl. Phys. Lett. 82, 1893–1895.

    Article  ADS  Google Scholar 

  72. Imtiaz, A. and Anlage, S. M. (2003) A novel STM-assisted microwave microscope with capacitance and loss imaging capability, Ultramicroscopy 94, 209–216.

    Article  Google Scholar 

  73. Odom, T.W., Huang, J., Kim, P., and Lieber, C. (1998) Atomic structure and electronic properties of single-walled carbon nanotubes, Nature 391, 62.

    Article  ADS  Google Scholar 

  74. Dresselhaus, M. Dresselhaus, G. Avouris, Ph. (eds.) (2001) Carbon Nanotubes:Synthesis, Structure Properties and Applications, Springer-Verlag, Berlin.

    Google Scholar 

  75. Tans, S.J., Geerligs, L.J., Dekker, C., Wu, J., and Wegner, G. (1997) Deposition and atomic force microscopy of individual phthalocyanine polymers between nanofabricated electrodes, J. Vac. Sci. Technol. B 15, 586–589.

    Google Scholar 

  76. Porath, D., Bezryadin, A., de Vries, S., and Dekker, C. (2000) Direct measurement of electrical transport through DNA molecules, Nature 403, 635–638.

    Article  ADS  Google Scholar 

  77. Storm, A.J., van Noort, J., de Vries, S., and Dekker, C. (2001) Insulating behavior for DNA molecules between nanoelectrodes at the 100 nm length scale, Appl. Phys. Lett. 79, 3881–3883.

    Article  ADS  Google Scholar 

  78. Derycke, V., Martel, R., Appenzeller, J., and Avouris, P. (2002) Controlling doping and carrier injection in carbon nanotube transistors, Appl. Phys. Lett. 80, 2773–2775.

    Article  ADS  Google Scholar 

  79. Radosavljevic, M., Freitag, M., Thadani, K.V., and Johnson, A.T. (2002) Nonvolatile molecular memory elements based on ambipolar nanotube field effect transistors, Nano Lett. 2, 761–764.

    Article  ADS  Google Scholar 

  80. Fuhrer, M.S., Kim, B.M., Durkop, T., and Brintlinger, T. (2002) High-mobility nanotube transistor memory, Nano Lett. 2, 755–759.

    Article  ADS  Google Scholar 

  81. Luthi, R., Haefke, H., Meyer, K.P., Meyer, E., Howald, L., and Guntherodt, H.J. (1993) Surface and domain structures of ferroelectric-crystals studied with scanning force microscopy, J. Appl. Phys. 74, 7461–7471.

    Article  ADS  Google Scholar 

  82. Luthi, R., Haefke, H., Gutmannsbauer, W., Meyer, E., Howald, L., and Guentherodt, H.J. (1994) Statics and dynamics of ferroelectric domains studied with scanning force microscopy, J. Vac. Sci. Technol. B 12, 2451–2455.

    Google Scholar 

  83. Saurenbach, F. and Terris, B.D. (1990) Imaging of ferroelectric domain-walls by force microscopy, Appl. Phys. Lett. 56, 1703–1705.

    Article  ADS  Google Scholar 

  84. Ohgami, J., Sugawara, Y., Morita, S., Nakamura, E., and Ozaki, T. (1996) Determination of sign of surface charges of ferroelectric TGS using electrostatic force microscope combined with the voltage modulation technique, Jpn. J. Appl. Phys. A 35, 2734–2739.

    Article  ADS  Google Scholar 

  85. Eng, L.M., Fousek, J., and Gunter, P. (1997) Ferroelectric domains and domain boundaries observed by scanning force microscopy, Ferroelectrics 191, 211.

    Article  Google Scholar 

  86. Hong, J.W., Park, S.I., and Kim, Z.G. (1999) Measurement of hardness, surface potential, and charge distribution with dynamic contact mode electrostatic force microscope, Rev. Sci. Instrum. 70, 1735–1739.

    Article  ADS  Google Scholar 

  87. Eng, L.M., Güntherodt, H.J., Schneider, G.A., Kopke, U., and Munoz Saldana, J. (1999) Nanoscale reconstruction of surface crystallography from three-dimensional polarization distribution in ferroelectric barium-titanate ceramics, Appl. Phys. Lett. 74, 233–235.

    Article  ADS  Google Scholar 

  88. Eng, L.M., Güntherodt, H.J., Rosenman, G., Skliar, A., Oron, M., Katz, M., and Eger, D. (1998) Nondestructive imaging and characterization of ferroelectric domains in periodically poled crystals, J. Appl. Phys. 83, 5973–5977.

    Article  ADS  Google Scholar 

  89. Likodimos, V., Orlik, X.K., Pardi, L., Labardi, M., and Allegrini, M. (2000) Dynamical studies of the ferroelectric domain structure in triglycine sulfate by voltage-modulated scanning force microscopy, J. Appl. Phys. 87, 443–451.

    Article  ADS  Google Scholar 

  90. Borisevich, A.Y., Kalinin, S.V., Bonnell, D.A., and Davies, P.K. (2003) J. Mat. Res., in press

    Google Scholar 

  91. Tybell, T., Ahn, C.H., and Triscone, J-M. (1999) Ferroelectricity in thin perovskite films, Appl. Phys. Lett. 75, 856–858.

    Article  ADS  Google Scholar 

  92. Ganpule, C.S., Nagarjan, V., Li, H., Ogale, A.S., Steinhauer, D.E., Aggarwal, S., Williams, E.D., Ramesh, R., and De Wolf, P. (2000) Role of 90° domains in lead zirconate titanate thin films, Appl. Phys. Lett. 77, 292–294.

    Article  ADS  Google Scholar 

  93. Gruverman, A. and Ikeda, Y. (1998) Characterization and control of domain structure in SrBi2Ta2O9 thin films by scanning force microscopy, Jpn. J. Appl. Phys. 37, L939–941.

    Article  ADS  Google Scholar 

  94. Hong, S., Colla, E.L., Kim, E., No, K., Taylor, D.V., Tagantsev, A.K., Muralt, P., and Setter, N. (1999) High resolution study of domain nucleation and growth during polarization switching in Pb(Zr,Ti)O3 ferroelectric thin film capacitors, J. Appl. Phys. 86, 607–613.

    Article  ADS  Google Scholar 

  95. Colla, E.L., Hong, S., Taylor, D.V., Tagantsev, A.K., Setter, N., and No, K. (1998) Direct observation of region by region suppression of the switchable polarization (fatigue) in Pb(Zr,Ti)O3 thin film capacitors with Pt electrodes, Appl. Phys. Lett. 72, 2763–2765.

    Article  ADS  Google Scholar 

  96. Christman, J.A., Kim, S.H., Maiwa, H., Maria, J.P., Rodriguez, B.J., Kingon, A.I., and Nemanich, R.J. (2000) Spatial variation of ferroelectric properties in Pb(Zr0.3, Ti0.7)O3 thin films studied by atomic force microscopy, J. Appl. Phys. 87, 8031–8034.

    Article  ADS  Google Scholar 

  97. Takata, K., Miki, H., Kushida-Abdelghafar, K., Torii, K., and Fujisaki, Y. (1998) Freezing of polarization in a Pb(Zr, Ti)O3 film observed by strain imaging, Appl. Phys. A 66, S441–S443.

    ADS  Google Scholar 

  98. Gruverman, A., Auciello, O., and Tokumoto, H. (1996) Nanoscale investigation of fatigue effects in Pb(Zr,Ti)O3 films, Appl. Phys. Lett. 69, 3191–3193

    Article  ADS  Google Scholar 

  99. Kalinin, S.V. and Bonnell, D.A. (2000) Effect of phase transition on the surface potential of the BaTiO3 (100) surface by variable temperature scanning surface potential microscopy, J. Appl. Phys. 87, 950–3957.

    Google Scholar 

  100. Likodimos, V., Labardi, M., and Allegrini, M. (2000) Kinetics of ferroelectric domains investigated by scanning force microscopy. Phys. Rev. B 61, 14440–14447.

    ADS  Google Scholar 

  101. Kalinin, S.V. and Bonnell, D.A. (2001) Temperature dependence of polarization and charge dynamics on the BaTiO3(100) surface by scanning probe microscopy, Appl. Phys. Lett. 78, 1116–1118.

    Article  ADS  Google Scholar 

  102. Munoz-Saldana, J., Schneider, G.A., and Eng, L.M. (2001) Stress induced movement of ferroelastic domain walls in BaTiO3 single crystals evaluated by scanning force microscopy, Surf. Sci. 480, L402–L410.

    Article  Google Scholar 

  103. Alexe, M., Gruverman, A., Harnagea, C., Zakharov, ND., Pignolet, A., Hesse, D., and Scott, J.F. (1999) Switching properties of self-assembled ferroelectric memory cells, Appl. Phys. Lett. 75, 1158–1160.

    Article  ADS  Google Scholar 

  104. Roytburd, A.L., Alpay, S.P., Nagarajan, V., Ganpule, C.S., Aggarwal, S., Williams, E.D., and Ramesh, R. (2000) Measurement of internal stresses via the polarization in epitaxial ferroelectric films, Phys. Rev. Lett. 85, 190–193.

    Article  ADS  Google Scholar 

  105. Ganpule, C.S., Stanishevsky, A., Aggarwal, S., Melngailis, J., Williams, D.E., Ramesh, R., Joshi, V., and Paz de Araujo, C. (1999) Scaling of ferroelectric and piezoelectric properties in Pt/SrBi2Ta2O9/Pt thin films, Appl. Phys. Lett. 75, 3874–3876.

    Article  ADS  Google Scholar 

  106. Alexe, M., Harnagea, C., Hesse, D., and Gosele, U. (1999) Patterning and switching of nanosize ferroelectric memory cells, Appl. Phys. Lett. 75, 1793–1795.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Kluwer Academic Publishers

About this paper

Cite this paper

Bonnell, D., Shao, R. (2005). Principles of Basic and Advanced Scanning Probe Microscopy. In: Vilarinho, P.M., Rosenwaks, Y., Kingon, A. (eds) Scanning Probe Microscopy: Characterization, Nanofabrication and Device Application of Functional Materials. NATO Science Series II: Mathematics, Physics and Chemistry, vol 186. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3019-3_4

Download citation

Publish with us

Policies and ethics