Skip to main content
  • 582 Accesses

Abstract

Very high-speed and low-area hardware architectures of the SHACAL-1 encryption algorithm are presented in this paper. The SHACAL algorithm was a submission to the New European Schemes for Signatures, Integrity and Encryption (NESSIE) project and it is based on the SHA-1 hash algorithm. Sub-pipelined SHACAL-1 encryption and decryption architectures are described and when implemented on Virtex-II XC2V4000FPGA devices, run at a throughput of 23 Gbps. In addition, fully pipelined and iterative architectures of the algorithm are presented. The SHACAL-1 decryption algorithm is derived and also presented in the paper, since it was not provided in the submission to NESSIE.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. US NIST Advanced Encryption Standard, (January, 2004) http://csrc.nist.gov/encryption/aes/

    Google Scholar 

  2. Z. Pan, S. Venkateswaran, S.T. Gurumani, and B.E. Wells, Exploiting Fine-Grain Parallelism present within the International Data Encryption Algorithm using a Xilinx FPGA, 16th International Conference on Parallel and Distributed Computing Systems (PDCS-2003), (Nevada, US, 2003).

    Google Scholar 

  3. G. Rouvroy, F.X. Standaert, J.J. Quisquater, J.D. Legat, Efficient FPGA Implementation of Block Cipher MISTY1, The Reconfigurable Architecture Workshop (RAW 2003), (Nice, France, 2003).

    Google Scholar 

  4. F.X. Standaert, G. Rouvroy, Efficient FPGA Implementation of Block Ciphers Khazad and MISTY1, 3rd NESSIE Workshop, http://www.di.ens.fr/wwwgrecc/NESSIE3/, (Germany, 2002).

    Google Scholar 

  5. T. Ichikawa, T. Sorimachi, T. Kasuya, M. Matsui, On the criteria of hardware evaluation of block ciphers(1), Technical report of IEICE, ISEC2001-53, (2001).

    Google Scholar 

  6. J.L. Beuchat, High Throughput Implementations of the RC6 Block Cipher Using Virtex-E and Virtex-II Devices, INRIA Research Report, http://perso.ens-lyon.fr/jean-luc.beuchat/publications.html, (July, 2002).

    Google Scholar 

  7. T. Ichikawa, T. Sorimachi, T. Kasuya, On Hardware Implementation of Block Ciphers Selected at the NESSIE Project Phase 1, 3rd NESSIE Workshop, http://www.di.ens.fr/wwwgrecc/NESSIE3/, (Germany, November 2002).

    Google Scholar 

  8. M. McLoone, J.V. McCanny, Very High Speed 17 Gbps SHACAL Encryption Architecture, 13th International Conference on Field Programmable Logic and Applications-FPL 2003, (Portugal, September 2003).

    Google Scholar 

  9. H. Handschuh, D. Naccache, SHACAL, 1st NESSIE Workshop, http://www.cosic.esat.kuleuven.ac.be/nessie/workshop/, (Belgium, November, 2000).

    Google Scholar 

  10. K.K. Ting, S.C.L. Yuen, K.H. Lee, P.H.W. Leong, An FPGA based SHA-256 Processor, 12th International Conference on Field Programmable Logic and Applications—FPL 2002, (France, September, 2002).

    Google Scholar 

  11. T. Grembowski, R. Lien, K. Gaj, N. Nguyen, P. Bellows, J. Flidr, T. Lehman, B. Schott, Comparative Analysis of the Hardware Implementations of Hash Functions SHA-1 and SHA-512, Information Security Conference”, (October, 2002).

    Google Scholar 

  12. M. McLoone, J.V. McCanny, Efficient Single-Chip Implementation of SHA-384 and SHA-512, IEEE International Conference on Field-Programmable Technology–FPT 2002), (Hong Kong, Dec 2002).

    Google Scholar 

  13. T. Kim, W. Jao, S. Tjiang, Circuit Optimization Using Carry-Save-Adder Cells, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, Vol. 17, No. 10, (October, 1998).

    Google Scholar 

  14. G.P. Saggese, A. Mazzeo, N. Mazzocca, A.G.M. Strollo, An FPGA-Based Performance Analysis of the Unrolling, Tiling, and Pipelining of the AES Algorithm, 13th International Conference on Field Programmable Logic and Applications–FPL 2003, (Portugal, September, 2003).

    Google Scholar 

  15. M. McLoone, Hardware Performance Analysis of the SHACAL-2 Encryption Algorithm, submitted to IEE Proceedings-Circuits, Devices and Systems, (July, 2003).

    Google Scholar 

  16. NESSIE, Performance of Optimized Implementations of the NESSIE Primitives, http://www.cosic.esat.kuleuven.ac.be/nessie/deliverables/D21-v2.pdf, (February, 2003).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this chapter

Cite this chapter

McLoone, M., McCanny, J. (2005). Performance Analysis of SHACAL-1 Encryption Hardware Architectures. In: Lysaght, P., Rosenstiel, W. (eds) New Algorithms, Architectures and Applications for Reconfigurable Computing. Springer, Boston, MA. https://doi.org/10.1007/1-4020-3128-9_20

Download citation

  • DOI: https://doi.org/10.1007/1-4020-3128-9_20

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4020-3127-4

  • Online ISBN: 978-1-4020-3128-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics