Skip to main content

Time Integration Techniques to Investigate the Long-Term Behaviour of Dissipative Structural Systems

  • Conference paper
IUTAM Symposium on Chaotic Dynamics and Control of Systems and Processes in Mechanics

Part of the book series: Solid Mechanics and its Applications ((SMIA,volume 122))

  • 1418 Accesses

Abstract

The dynamics of a beam subjected to quasi-periodic excitation is simulated with a finite element model and an energy-conserving based time integration scheme. The numerical methods are capable of reproducing the dynamics of the system if a fixed time step size is applied, whereas the application of adaptive time step seems more problematic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F. Moon and P. Holmes, “A magnetoelastic strange attractor,” J Sound Vib., 65(2), 275–296, 1979.

    Article  MATH  Google Scholar 

  2. S.W. Shaw, “Forced vibrations of a beam with one-sided boundary constraint-Theory and experiment,” J. Sound Vib., 99(2): 199–212, 1985.

    Article  Google Scholar 

  3. D.J. Wagg, G. Karpodinis, and S.R. Bishop, “An experimental study of the impulse response of a vibro-impacting cantilever beam,” J. Sound Vib., 228(2): 243–264, 1999.

    Article  Google Scholar 

  4. K. Popp and P. Stelter, “Stick-slip vibrations and chaos,” Phil. T. Roy. Soc. A 332(1624): 89–105, 1990.

    Article  MATH  Google Scholar 

  5. M.F. Azeez and A.F. Vakakis, “Proper orthogonal decomposition (POD) of a class of vibroimpact oscillations,” J. Sound Vib., 240(5), 859–889, 2001.

    Article  Google Scholar 

  6. R.V. Kappagantu and B.F. Feeny, “Dynamical characterization of a fritionally excited beam,” Nonlin. Dyn., 22: 317–333, 2000.

    Article  MATH  Google Scholar 

  7. K. Yagasaki, “Chaotic dynamics of a quasi-periodically forced beam,” J. Appl. Mech., 59:161–167, 1992.

    MATH  MathSciNet  Google Scholar 

  8. K. Yagasaki, “Bifurcations and chaos in a quasi-periodically forced beam: {Theory}, simulation and experiment,” J. Sound Vib., 183(1):1–31, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  9. P. B. Bornemann Ph.D. thesis in preparation, Department of Aeronautics, Imperial College London, 2003.

    Google Scholar 

  10. N. Stander and E. Stein, “An energy-conserving planar finite beam element for dynamics of flexible mechanisms,” Engng. Comput., 13(6):60–85, 1996.

    Article  MATH  Google Scholar 

  11. J. Guckeheimer and P. Holmes. Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields, Springer Verlag, New York, 2002.

    Google Scholar 

  12. P. B. Bornemann and U. Galvanetto, “Discrete dynamics of implicit time integration schemes for a dissipative system,” to be published in Comm. Num. Meth. Engng., 2003.

    Google Scholar 

  13. E. Hairer, S.P. Nørsett, and G. Wanner, Solving Ordinary Differential Equations I, Nonstiff Problems, volume 8 of Springer series in computational mathematics. Springer-Verlag, Berlin, 1987.

    MATH  Google Scholar 

  14. O.C. Zienkiewicz and Y.M. Xie, “A simple error estimator and adaptive time-stepping procedure for dynamic analysis,” Earth. Eng. Struct., 20(9), 871–887, 1991.

    Google Scholar 

  15. E. Hairer, C. Lubich, and G. Wanner. Geometric Numerical Integrations, volume 31 of Springer series in computational mathematics. Springer-Verlag, Berlin, 2002.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this paper

Cite this paper

Galvanetto, U., Bomemann, P.B. (2005). Time Integration Techniques to Investigate the Long-Term Behaviour of Dissipative Structural Systems. In: Rega, G., Vestroni, F. (eds) IUTAM Symposium on Chaotic Dynamics and Control of Systems and Processes in Mechanics. Solid Mechanics and its Applications, vol 122. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3268-4_18

Download citation

  • DOI: https://doi.org/10.1007/1-4020-3268-4_18

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-3267-7

  • Online ISBN: 978-1-4020-3268-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics