Skip to main content

Part of the book series: NATO Science Series ((NAII,volume 192))

Abstract

Magnetic resonance techniques, namely Electron Paramagnetic Resonance (EPR) and solid state Nuclear Magnetic Resonance (NMR), are powerful non-destructive tools for studying electron-nuclear and crystalline structure, inherent electronic and magnetic properties and transformations in carbon-based nanomaterials. EPR allows to control purity of ultradispersed diamond (UDD) samples, to study the origin, location and spin-lattice relaxation of radical-type carbon-inherited paramagnetic centers (RPC) as well as their transformation during the process of temperature driven diamond-to-graphite conversion. Solid state NMR on 1H and 13C nuclei provide one with information on the crystalline quality, allows quantitative estimation of the number of different allotropic forms, and reveals electron-nuclear interactions within the UDD samples under study. Results of recent EPR and 13C NMR study of pure and transition metal doped UDD samples, obtained by detonation technique, are reported and discussed. In addition to characteristic EPR signals, originated form para- and ferromagnetic impurities and doping ions, the UDD samples show a high concentration of RPC (up to 1020 spin/gram), which are due to structural defects (dangling C-C bonds) on the diamond cluster surface. In-situ EPR sample’s vacuumization experiment in conjunction with precise SQUID magnetization measurements allowed concluding that each UDD particle carries a single spin (dangling bond) per each from 8 crystal (111) facets bounded the particle.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A.M. Staver, N.V. Gubareva, A. I. Lyamkin, and E. A. Petrov. Synthesis of ultrafine diamond powders by explosion. Physica Goreniya i Vzryva 20(5), 100–04 (1984).

    Google Scholar 

  2. N.R. Greiner, D.S. Phillips, J.D. Johnson, and F. Volk. Diamonds in detonation soot. Nature 333(6172), 440–42 (1988).

    Article  Google Scholar 

  3. V.I. Trefilov, V.S. Moskalenko, G.I. Savvakin, E.A. Tsapko, and D.G. Savvakin. Structural characteristics of ultrafine diamonds and hypothetical mechanism of their formation under highly nonequilibrium conditions of detonating carbon-containing explosives. Dok. Akad Nauk SSSR 305(1), 85–90 (1989).

    Google Scholar 

  4. V.L. Kuznetsov, A.L. Chuvilin, E.M. Moroz, V.N. Kolomiichuk, S.K. Shaikhutdinov, and Y.V. Butenko. Effect of explosion conditions on the structure of detonation soots: ultradisperse diamond and onion carbon. Carbon 32(5), 873–82 (1994).

    Article  Google Scholar 

  5. M. Yoshikawa, Y. Mori, H. Obata, M. Maegawa, G. Katagiri, H. Ishida, and A. Ishitani, Raman scattering from nanometer-sized diamond. Appl. Phys. Lett. 67(5), 694–96 (1995).

    Google Scholar 

  6. A.E. Alexenskii, M.V. Baidakova, A.Ya. Vul’, V.Yu. Davydov, and Yu.A. Pevtsova, Diamond-graphite phase transition in clusters of ultrafine diamond. Phys. Solid State 39(6), 1007–15 (1997).

    Google Scholar 

  7. H. Makita, K. Nishimura, N. Jiang, A. Hatta, T. Ito, and A. Hiraki. Ultrahigh particle density seeding with nanocrystal diamond particles Thin Solid Films 281–282(1–2), 279–81 (1996).

    Google Scholar 

  8. V.L. Kuznetsov, A.L. Chuvilin, Y.V. Butenko, I..Yu. Malkov, and V.M. Titov, Onion-like carbon from ultra-disperse diamond. Chem. Phys. Lett. 222(4), 343–48 (1994).

    Article  Google Scholar 

  9. E.D. Obraztsova, M. Fujii, S. Hayashi, V.L. Kuznetsov, and Y.V. Butenko. Raman identification of onion-like carbon. Carbon 36(5–6), 821–26 (1998).

    Google Scholar 

  10. M.V. Baidakova, A.Ya. Vul’, and V.I. Siklitski. Ultradisperse-diamond nanoclusters. Fractal structure and diamond-graphite phase transition. Chaos, Solitons & Fractals 10(12), 2153–63 (1999).

    Google Scholar 

  11. A.E. Alexensky, M.V. Baidakova, A.Ya. Vul’, and V.I. Siklitski. The structure of diamond nanoclusters. Phys. Solid State 41(4), 668–71 (1999).

    Google Scholar 

  12. A.V. Belyankina, T.A. Nachal’naya, Yu.I. Sozin, and L.A. Shul’man. X-ray diffraction data and EPR spectra of explosion-formed diamonds. Sint. Almazy 5, 5–7 (1975).

    Google Scholar 

  13. V.N. Bakul and V.D. Andreev. AV-type diamonds synthesized by explosion. Sint. Almazy 5, 3–4 (1975).

    Google Scholar 

  14. M.V. Vlasova, N.G. Kakazei, and G. I. Savvakin. Some properties of ultradispersion diamonds prepared under high-temperature explosion synthesis conditions. Izv. Akad. Nauk SSSR, Neorg. Mater. 15(7), 1303–04 (1979).

    Google Scholar 

  15. N.D. Samsonenko and E.V. Sobolev. Electron paramagnetic resonance caused by a diamond surface. Pis’ma Zh. Eksp. Teor. Fiz. 5(9), 304–07 (1967).

    Google Scholar 

  16. A.L. Vereshchagin, V.F. Komarov, V.M. Mastikhin, V.V. Novoselov, L.A. Petrova, L.L. Zolotukhina, N.V. Vychin, K.S. Baraboshin, and A.E. Petrov. Proceedings of the Vth All-Union Meeting on Detonation, Krasnoyarsk 1991, 1, 99 (1991).

    Google Scholar 

  17. K. Iakuobovskii, G.J. Adriaenssens, K. Meykens, M. Nesladek, A.Ya. Vul’, and V. Yu. Osipov. Study of defects in CVD and ultradisperse diamond. Diamonds and Rel. Mater. 8, 1476–79 (1999).

    Google Scholar 

  18. K. Iakuobovskii, M.V. Baidakova, B.H. Wouters, A. Stesmans, G.J. Adriaenssens, A.Ya. Vul’, and P.J. Grobet. Structure and defects of detonation synthesis nanodiamond. Diamonds and Rel. Mater. 9, 861–65 (2000).

    Google Scholar 

  19. A.I. Shames, A.M. Panich, W. Kempiński, A.E. Alexenskii, M.V. Baidakova, A.T. Dideikin, V.Yu. Osipov, V.I. Siklitski, E. Osawa, M. Ozawa, and A.Ya. Vul’. Defects and impurities in nanodiamonds: EPR, NMR and TEM study. J. Phys. Chem. Solids 63(11), 1993–01 (2002).

    Google Scholar 

  20. O.E. Andersson, B.L.V. Prasad, H. Sato, T. Enoki, Y. Hishiyama, Y. Kaburagi, M. Yoshikawa, and S. Bandow. Structure and electronic properties of graphite nanoparticles. Phys. Rev. B 58, 16387–95 (1998).

    Google Scholar 

  21. B.L.V. Prasad, H. Sato, T. Enoki, Y. Hishiyama, Y. Kaburagi, M. Yoshikawa, A.M. Rao, P.C. Eklund, and M. Endo. Heat treatment effect on the nanosized graphite π-electron system during diamond to graphite conversion. Phys. Rev. B 62, 11209–18 (2000).

    Google Scholar 

  22. J.-B. Donnet, E. Fousson, L. Delmott, M. Samirant, C. Baras, T.K. Wang, and A. Eckhardt. 13C characterization of nanodiamonds. C.R. Acad. Sci. Paris, Serie IIc, Chimie 3, 831–38 (2000).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this paper

Cite this paper

Shames, A. et al. (2005). Magnetic Resonance Study of Nanodiamonds. In: Gruen, D.M., Shenderova, O.A., Vul’, A.Y. (eds) Synthesis, Properties and Applications of Ultrananocrystalline Diamond. NATO Science Series, vol 192. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3322-2_21

Download citation

Publish with us

Policies and ethics