Skip to main content

Complexities of Dynamic Forest Management Policies

  • Chapter
Economics, Sustainability, and Natural Resources

Part of the book series: Sustainability, Economics, and Natural Resources ((SENR,volume 1))

Abstract

The complications for forest management policies are considered in light of nonlinearities in the ecological-economic dynamics of forests. Such nonlinearities imply the existence of multiple solutions in forestry management problems specified fully for all dynamic patterns of amenities. Such nonlinearities imply the possibilities of discontinuities and critical thresholds in such systems. Specific policy problems considered include fire management, pest management, and size of cuts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alavalapati, J.R.R., Stainback, G.A., & Carter, D.R. (2002). Restoration of the longleaf pine ecosystem on private lands in the US South: An ecological economic analysis. Ecological Economics, 40, 411–419.

    Article  Google Scholar 

  • Alchian, A.A. (1952). Economic replacement policy. Santa Monica: RAND Corporation.

    Google Scholar 

  • Alig, R.J., Adams, D.M., & McCarl, B.A. (1998). Ecological and economic impacts of forest policies: Interactions across forestry and agriculture. Ecological Economics, 27, 63–78.

    Article  Google Scholar 

  • Allen, T.F.H., & Starr, T.B. (1982). Hierarchy: Perspectives for ecological complexity. Chicago: University of Chicago Press.

    Google Scholar 

  • Arrow, K.J., & Fisher, A.C. (1974). Preservation, uncertainty and irreversibility. Quarterly Journal of Economics, 87, 312–319.

    Article  Google Scholar 

  • Bascompte, J., & Solé, R. (1996). Habitat fragmentation and extinction thresholds in spatially explicit models. Journal of American Ecology, 65, 465–473.

    Article  Google Scholar 

  • Boulding, K.E. (1935). The theory of a single investment. Quarterly Journal of Economics, 49, 475–494.

    Article  Google Scholar 

  • Bowes, M.D., & Krutilla, J.V. (1985). Multiple use management of public forestlands. In Allen V.K. and Sweeny, J.L. (Eds.), Handbook of natural resources and energy economics (pp. 531–569). Amsterdam: Elsevier.

    Google Scholar 

  • Caparrós, A., & Jacquemont, F. (2003). Conflicts between biodiversity and carbon sequestration programs: Economic and legal implications. Ecological Economics, 46, 143–157.

    Article  Google Scholar 

  • Casti, J.L. (1989). Alternate realities: Mathematical models of nature and man. New York: Wiley-Interscience.

    Google Scholar 

  • Clark, C.W., & Mangel, M. (2000). Dynamic state variable models in ecology: Methods and applications. New York: Oxford University Press.

    Google Scholar 

  • Conrad, J.M. (1997). On the option value of old-growth forests. Ecological Economics, 22, 97–102.

    Article  Google Scholar 

  • Faustmann, M. (1849). On the determination of the value which forest land and immature stands possess for forestry, English edition, M. Gane (Ed.) (1968), Martin Faustmann and the evolution of discounted cash flow. Oxford University Paper 42.

    Google Scholar 

  • Fisher, I. (1907). The rate of interest. New York: Macmillan.

    Google Scholar 

  • Gaffney, M. (1957). Concepts of financial maturity of timber and other assets. Agricultural Economics Information Series 62, Raleigh: North Carolina State College, September.

    Google Scholar 

  • Gram, S. (2001). Economic valuation of special forest products: An assessment of methodological shortcomings. Ecological Economics, 26, 109–117.

    Article  Google Scholar 

  • Hartman, R. (1976). The harvesting decision when a standing forest has value. Economic Inquiry, 14, 52–58.

    Article  MathSciNet  Google Scholar 

  • Holling, C.S. (1965). The functional response of predators to prey density and its role in mimicry and population regulation. Memorials of the Entomological Society of Canada, 45, 1–60.

    Google Scholar 

  • Holling, C.S. (1973). Resilience and stability of ecological systems. Annual Review of Ecology and Systematics, 4, 1–24.

    Article  Google Scholar 

  • Holling, C.S. (1986). Resilience of ecosystems, local surprise and global change. In W.C. Clark & R.E. Munn (Eds.), Sustainable development of the biosphere (pp. 292–317). Cambridge: Cambridge University Press.

    Google Scholar 

  • Holling, C.S. (1992). Cross-scale morphology, geometry, and dynamics of ecosystems. Ecological Monographs, 62, 447–502.

    Article  Google Scholar 

  • Hotelling, H. (1925). A general mathematical theory of depreciation. Journal of the American Statistical Association, 20, 340–353.

    Article  Google Scholar 

  • Johnson, E.A. (1992). Fire and vegetation dynamics: Studies from the North American boreal forest. New York: Cambridge University Press.

    Book  Google Scholar 

  • Johnson, K.N., Jones, D.B., & Kent, B.M. (1980). A user’s guide to the forest planning model (FORPLAN). Fort Collins: USDA Forest Service, Land Management Planning.

    Google Scholar 

  • Kant, S. (2000). A dynamic approach to forest regimes in developing economies. Ecological Economics, 32, 287–300.

    Article  Google Scholar 

  • Ludwig, D., Jones, D.D., & Holling, C.S. (1978). Qualitative analyses of insect outbreak systems: The spruce budworm forest. Journal of Animal Ecology, 47, 315–332.

    Article  Google Scholar 

  • May, R. M. (1977). Thresholds and breakpoints in ecosystems with a multiplicity of stable states. Nature, 269, 471–477.

    Article  Google Scholar 

  • Metzger, J.P., & Décamps, H. (1997). The structural connectivity threshold: An hypothesis in conservation biology at the landscape scale. Acta Oecologica, 18, 1–12.

    Article  Google Scholar 

  • Muradian, R. (2001). Ecological thresholds: A survey. Ecological Economics, 38, 7–24

    Article  Google Scholar 

  • Norgaard, R.B. (1981). Sociosystem and ecosystem coevolution in the Amazon. Journal of Environmental Economics and Management, 8, 238–254.

    Article  Google Scholar 

  • Norgaard, R.B. (1994). Development betrayed: The end of progress and a coevolutionary revisioning of the future. London: Routledge.

    Google Scholar 

  • Perrings, C., Mäler, K., Folke, C., Holling, C.S., & Jansson, B. (Eds.) (1995). Biodiversity loss: Economic and ecological issues. Cambridge: Cambridge University Press.

    Google Scholar 

  • Plantinga, A.J., & Wu, J. (2003). Co-benefits from carbon sequestration in forests: Evaluating reductions in agricultural externalities from an afforestation policy in Wisconsin. Land Economics, 79, 74–85.

    Article  Google Scholar 

  • Porter, R.C. (1982). The new approach to wilderness through benefit cost analysis. Journal of Environmental Economics and Management, 9, 59–80.

    Article  Google Scholar 

  • Possingham, H., & Tuck, G. (1997). Application of stochastic dynamic programming to optimal fire management of a spatially structured threatened species. In A.D. McDonald & M. McAleer (Eds.), Proceedings international congress on modelling and simulation (Vol. 2). Canberra: Modeling and Simulation Society of Australia.

    Google Scholar 

  • Prince, R., & Rosser, Jr. J.B. (1985). Some implications of delayed environmental costs for benefit cost analysis: A study of reswitching in the western coal lands. Growth and Change, 16, 18–25.

    Article  Google Scholar 

  • Pyke, G.H., Saillard, R., & Smith, J. (1995). Abundance of eastern bristlebirds in relation to habitat and fire history. Emu, 95, 106–110.

    Article  Google Scholar 

  • Reed, W.J. (1993). The decision to conserve or harvest old-growth forest. Ecological Economics, 8, 45–69.

    Article  Google Scholar 

  • Reed, W.J., & Clarke, H.R. (1990). Harvest decision and asset valuation for biological resources exhibiting size-dependent stochastic growth. International Economic Review, 31, 147–169.

    Article  MathSciNet  Google Scholar 

  • Rosser, J.B. Jr. (1991). From catastrophe to chaos: A general theory of economic discontinuities. Boston: Kluwer Academic.

    Google Scholar 

  • Rosser, J.B. Jr. (2001). Complex ecologic-economic dynamics and environmental policy. Ecological Economics, 37, 23–37.

    Article  Google Scholar 

  • Rosser, J.B. Jr., Folke, C., Günther, F., Isomäki, H., Perrings, C., & Puu, T. (1994). Discontinuous change in multi-level hierarchical systems. Systems Research, 11, 77–94.

    Article  Google Scholar 

  • Samuelson, P.A. (1976). Economics of forestry in an evolving society. Economic Inquiry, 14, 466–491.

    Article  Google Scholar 

  • Saphores, J. (2003). Harvesting a renewable resource under uncertainty. Journal of Economic Dynamics and Control, 28, 509–529.

    Article  MathSciNet  Google Scholar 

  • Swallow, S.K., Parks, P.J., & Wear, D.N. (1990). Policy-relevant nonconvexities in the production of multiple forest benefits. Journal of Environmental Economics and Management, 19, 264–280.

    Article  Google Scholar 

  • Tilman, D., May, R., Lehman, C., & Nowak, M. (1994). Habitat destruction and the extinction of debt. Nature, 371, 65–66.

    Article  Google Scholar 

  • von Thünen, J.H. (1826). Der Isolierte Staat in Biehiezung auf Landwirtschaft und Nationaleckonomie. Hamburg: Perthes.

    Google Scholar 

  • Weitzman, M.L. (1992). On diversity. Quarterly Journal of Economics, 107, 363–406.

    Article  MATH  Google Scholar 

  • Whelan, R.J. (1995). On the ecology of fire. New York: Cambridge University Press.

    Google Scholar 

  • Willassen, Y. (1998). The stochastic rotation problem: A generalization of Faustmann’s formula to stochastic forest growth. Journal of Economic Dynamics and Control, 22, 573–596.

    Article  MATH  MathSciNet  Google Scholar 

  • Zinkhan, F.C. (1991). Option pricing and timberland’s land-use conversion option. Land Economics, 67, 317–325.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this chapter

Cite this chapter

Rosser, J.B. (2005). Complexities of Dynamic Forest Management Policies. In: Kant, S., Berry, R.A. (eds) Economics, Sustainability, and Natural Resources. Sustainability, Economics, and Natural Resources, vol 1. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3518-7_9

Download citation

Publish with us

Policies and ethics