Skip to main content

Proton Transport in Polymer Electrolyte Fuel Cell Membranes

An overview over the recent experimental, theoretical and simulation studies

  • Conference paper
Ionic Soft Matter: Modern Trends in Theory and Applications

Part of the book series: NATO Science Series II: Mathematics, Physics and Chemistry ((NAII,volume 206))

Abstract

At the heart of every fuel cell there is an electrolyte separating anode and cathode compartments. In low and intermediate temperature fuel cells its principal purpose is efficient and selective transport of anodically generated protons to the cathode where they can combine with oxygen ions to form water. The electrolyte in many current fuel cell designs such as the hydrogen-fuelled polymer electrolyte membrane fuel cell and the methanol-fuelled direct methanol fuel cell consists of a thin membrane of a polymer electrolyte in which protons are the only mobile charge carriers. Current membrane materials are efficient proton conductors but due to their high permeability for water and methanol also quite unselective. Understanding the mechanisms and bottlenecks of proton transport in such materials is thus key for the design of improved materials which are needed for introduction of fuel cells as a power supply for electrical appliances. It is the purpose of this chapter to give an overview over the recent literature of experimental, theoretical and simulation studies on proton transport in polymer electrolyte membranes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gottesfeld, S., and Zawodzinski T.A. (1997) Advances in Electrochemical Science and Engineering, (eds. Alkire R.C., Gerischer, H., Kolb D.M., and Tobias, C.W.), vol. 5, p. 195–301. Weinheim: Wiley-VCH.

    Chapter  Google Scholar 

  2. Carrette, L., Friedrich, K.A., and Stimming, U. ChemPhysChem, 2000, 1, p. 162.

    Article  Google Scholar 

  3. Carrette, L., Friedrich, K.A., and Stimming, U. Fuel Cells, 2001, 1, p. 5.

    Article  Google Scholar 

  4. Litster, S., and McLean, G. J. Power Sources, 2004, 130, p. 61.

    Article  Google Scholar 

  5. Thomas, S.C., Ren, X., and Gottesfeld, S. J. Electrochem. Soc., 1999, 146, p. 4354.

    Article  Google Scholar 

  6. Dinh, H.N., Ren, X., Garzon, F.H., Zelenay, P., and Gottesfeld, S. J. Electroanal. Chem., 2000, 491, p. 222.

    Article  Google Scholar 

  7. Tong, Y.Y., Rice, C., Wieckowski, A., and Oldfield, E. J. Am. Chem. Soc., 2000, 122, p. 1123.

    Article  Google Scholar 

  8. Passalacqua, E., Lufrano, F., Squadrito, G., Patto, A., and Giorgi, L. Electrochim. Acta, 2001, 46, p. 799.

    Article  Google Scholar 

  9. Waszczuk, P., Wieckowski, A., Zelenay, P., Gottesfeld, S., Coutanceau, C., Léger, J.-M., and Lamy, C. J. Electroanal. Chem., 2001, 511, p. 55.

    Article  Google Scholar 

  10. Lasch, K., Hayn, G., Jörissen, L., Garche, J., and Besenhardt, O. J. Power Sources, 2002, 105, p. 305.

    Article  Google Scholar 

  11. Roth, C., Martz, N., Hahn, F., Léger, J.-M., Lamy, C., and Fuess, H. J. Electrochem. Soc., 2002, 149, p. E433.

    Article  Google Scholar 

  12. Friedrich, K., Geyzers, K., Dickinson, A., and Stimming, U. J. Electroanal. Chem., 2002, 524–525, p. 261.

    Article  Google Scholar 

  13. Neergat, M., Leveratto, D., and Stimming, U. Fuel Cells, 2002, 2, p. 25.

    Article  Google Scholar 

  14. Lu, C., Rice, C., Masel, R.I., Babu, P.K., Waszczuk, P., Kim, H.S., Oldfield, E., and Wieckowski, A. J. Phys. Chem. B, 2002, 106, p. 9581.

    Article  Google Scholar 

  15. Khazova, O.A., Mikhailova, A.A., Skundin, A.M., Tuseeva, E.K., Hvránek, A., and Wippermann, K. Fuel Cells, 2002, 2, p. 99.

    Article  Google Scholar 

  16. Ralph, T.R., and Hogarth, M.P. Platinum Metals Rev., 2002, 46, p. 3.

    Google Scholar 

  17. Ralph, T.R., and Hogarth, M.P. Platinum Metals Rev., 2002, 46, p. 117.

    Google Scholar 

  18. Ralph, T.R., and Hogarth, M.P. Platinum Metals Rev., 2002, 46, p. 146.

    Google Scholar 

  19. Diemant, T., Hager, T., Hoster, H., Rauscher, H., and Behm, R. Surf. Sci., 2003, 541, p. 137.

    Article  ADS  Google Scholar 

  20. Löffler, M.-S., Natter, H., Hempelmann, R., and Wippermann, K. Electrochim. Acta, 2003, 48, p. 3047.

    Article  Google Scholar 

  21. Gasteiger, H., Panels, J., and Yan, S. J. Power Sources, 2004, 127, p. 162.

    Article  Google Scholar 

  22. Taniguchi, A., Akita, T., Yasuda, K., and Miyazaki, Y. J. Power Sources, 2004, 130, p. 42.

    Article  Google Scholar 

  23. Cappadonia, M., Erning, J.W., Niaki, S.M.S., and Stimming, U. Solid State Ionics, 1995, 77, p. 65.

    Article  Google Scholar 

  24. Kreuer, K.D. J. Membrane Sci., 2001, 185, p. 29.

    Article  Google Scholar 

  25. Zawodzinski, T.A., Davey, J., Valerio, J., and Gottesfeld, S. Electrochim. Acta, 1995, 40, p. 297.

    Article  Google Scholar 

  26. Munichandraiah, N., McGrath, K., Prakash, G.K.S., Aniszfeld, R., and Olah, G.A. J. Power Sources, 2003, 117, p. 98.

    Article  Google Scholar 

  27. Ramya, K., and Dhathathreyan, K. J. Electroanal.Chem., 2003, 542, p. 109.

    Article  Google Scholar 

  28. Kim, Y.J., Choi, W., Woo, S.I., and Hong, W.H. J. Membrane Sci., 2004, 238, p. 213.

    Article  Google Scholar 

  29. Gogel, V., Frey, T., Yongsheng, Z., Friedrich, K.A., Jörissen, L. and Garche, J. J. Power Sources, 2004, 127, p. 172.

    Article  Google Scholar 

  30. Dohle, H., Schmitz, H., Mergel, J., and Stolten, D. J. Power Sources, 2002, 106, p. 313.

    Article  Google Scholar 

  31. Liu, F., Yi, B., Xing, D., Yu, J., Hou, Z., and Fu, Y. J. Power Sources, 2003, 124, p. 81.

    Article  Google Scholar 

  32. Chen, J., Matsuura, T., and Hori, M. J. Power Sources, 2004, 131, p. 155.

    Article  Google Scholar 

  33. Zawodzinski Jr, T.A., Springer, T.E., Uribe, F., and Gottesfeld, S. Solid State Ionics, 1993, 60, p. 199.

    Article  Google Scholar 

  34. Geiger, A.B., Tsukuda, A., Lehmann, E., Vontobel, P., Wokaun, A., and Scherer, G.G. Fuel Cells, 2002, 2, p. 92.

    Article  Google Scholar 

  35. Tüber, K., Pócza, D., and Hebling, C. J. Power Sources, 2003, 124, p. 403.

    Article  Google Scholar 

  36. Satija, R., Jacobson, D., Arif, M., and Werner, S. J. Power Sources, 2004, 129, p. 238.

    Article  Google Scholar 

  37. Kreuer, K.-D. Chem. Mater., 1996, 8, p. 610.

    Article  Google Scholar 

  38. Savadogo, O. J. New Mater. Eelctrochem. Syst., 1998, 1, p. 47.

    Google Scholar 

  39. Rikukawa, M., and Sanui, K. Prog. Polym. Sci., 2000, 25, p. 1463.

    Article  Google Scholar 

  40. Vielstich, W., Lamm, A., and Gasteiger, H.A. (2003). Handbook of Fuel Cells — Fundamentals, Technology and Applications. U.K., Chichester: Wiley.

    Google Scholar 

  41. Annu. Rev. Mater. Res., 2003, 33, (Special issue, materials for fuel cells).

    Google Scholar 

  42. Li, Q., Jenson, J.O., and Bjerrum, N.J. J. Chem. Mater., 2003, 15, p. 4896.

    Article  Google Scholar 

  43. Rozière, J., and Jones, D. Annu. Rev. Mater. Res.,2003, 33, p. 503.

    Article  ADS  Google Scholar 

  44. Kreuer, K.D., Paddison, S.J., Spohr, E., and Schuster, M. Chem. Rev., 2004, dOI: 10.1021/cr020715f.

    Google Scholar 

  45. Kreuer, K.D. Solid State Ionics, 1997, 94, p. 55.

    Article  Google Scholar 

  46. Drioli, E., Regina, A., Casciola, M., Oliveti, A., Trotta, F., and Massari, T. J. Membrane Sci., 2004, 228, p. 139.

    Article  Google Scholar 

  47. Mikhailenko, S.D., Wang, K., Kaliaguine, S., Xing, P., Robertson, G.P., and Guiver, M.D. J. Membrane Sci., 2004, 233, p. 93.

    Article  Google Scholar 

  48. Gierke, T.D., Munn, G.E., and Wilson, F.C. Journal of Polymer Science Part B-Polymer Physics, 1981, 19, p. 1687.

    ADS  Google Scholar 

  49. Yeager, H.L., and Steck, A. J. Electrochem. Soc., 1981, 128, p. 1880.

    Article  Google Scholar 

  50. Kreuer, K.D. Solid State Ionics, 1997, 97, p. 1.

    Article  Google Scholar 

  51. Eikerling, M., Kornyshev, A.A., and Stimming, U. J. Phys. Chem. B, 1997, 101, p. 10807.

    Article  Google Scholar 

  52. Eikerling, M., Kornyshev, A.A., Kuznetsov, A.M., Ulstrup, J., and Walbran, S. J. Phys. Chem., 2001, 105, p. 3646.

    Google Scholar 

  53. Eikerling, M., and Kornyshev, A.A. J. Electroanal. Chem., 2001, 502, p. 1.

    Article  Google Scholar 

  54. von Grotthus, C.J.D. Ann. Chim., 1806, LVIII, p. 54.

    Google Scholar 

  55. Tuckerman, M., Laasonen, K., Sprik, M., and Parrinello, M. J. Chem. Phys., 1995, 103, p. 150.

    Article  ADS  Google Scholar 

  56. Tuckerman, M., Laasonen, K., Sprik, M., and Parrinello, M. J. Phys. Chem., 1995, 99, p. 5749.

    Article  Google Scholar 

  57. Lobaugh, J., and Voth, G.A. J. Chem. Phys., 1996, 104, p. 2056.

    Article  ADS  Google Scholar 

  58. Tuckerman, M., Marx, D., Klein, M., and Parrinello, M. Science, 1997, 275, p. 817.

    Article  Google Scholar 

  59. Marx, D., Tuckerman, M.E., Hutter, J., and Parrinello, M. Nature, 1999, 397, p. 601.

    Article  ADS  Google Scholar 

  60. Marx, D., Tuckerman, M.E., and Parrinello, M. J. Phys.: Cond. Matter., 2000, 12, p. A153.

    Article  ADS  Google Scholar 

  61. Agmon, N. Chem. Phys. Lett., 1995, 244, p. 456.

    Article  ADS  Google Scholar 

  62. Spohr, E., Commer, P., and Kornyshev, A.A. J. Phys. Chem. B, 2002, 106, p. 10560.

    Article  Google Scholar 

  63. Commer, P., Cherstvy, A.G., Spohr, E., and Kornyshev, A.A. Fuel Cells, 2002, 2, p. 127.

    Article  Google Scholar 

  64. Spohr, E. Mol. Simulation, 30, p. 107.

    Google Scholar 

  65. Walbran, S., and Kornyshev, A.A. J. Chem. Phys., 2001, 114, p. 10039.

    Article  ADS  Google Scholar 

  66. Warshel, A., and Weiss, R.M. J. Am. Chem. Soc., 1980, 102, p. 6218.

    Article  Google Scholar 

  67. Sagnella, D.E., and Tuckerman, M.E. J. Chem. Phys., 1997, 108, p. 2073.

    Article  ADS  Google Scholar 

  68. Schmitt, U.W., and Voth, G.A. J. Phys. Chem. B, 1998, 102, p. 5547.

    Article  Google Scholar 

  69. Vuilleumier, R., and Borgis, D. Chem. Phys. Lett., 1998, 284, p. 71.

    Article  ADS  Google Scholar 

  70. Cuma, M., Schmitt, U.W., and Voth, G.A. Chem. Phys., 2000, 258, p. 187.

    Article  Google Scholar 

  71. Day, T.J.F., Soudackov, A.V., Čuma, M., Schmitt, U.W., and Voth, G.A. J. Chem. Phys., 2002, 117, p. 5839.

    Article  ADS  Google Scholar 

  72. Vishnyakov, A., and Neimark, A.V. J. Phys. Chem. B, 2000, 104, p. 4471.

    Article  Google Scholar 

  73. Vishynakov, A., and Neimark, A.V. J. Phys. Chem. B, 2001, 105, p. 9586.

    Article  Google Scholar 

  74. Vishynakov, A., and Neimark, A.V. J. Phys. Chem. B, 2001, 105, p. 7830.

    Article  Google Scholar 

  75. Jang, S.S., Molinero, V., Cağin, T., and Goddard III, W.A. J. Phys. Chem. B, 2004, 108, p. 3149.

    Article  Google Scholar 

  76. Seeliger, D., Hartnig, C., and Spohr, E. 2004, (in preparation).

    Google Scholar 

  77. Berendsen, H.J.C., Grigera, J.R., and Straatsma, T.P. J. Phys. Chem., 1987, 91, p. 6269.

    Article  Google Scholar 

  78. Fornili, S.L., Migliore, M., and Palazzo, M.A. Chem. Phys. Lett., 1986, 125, p. 419.

    Article  ADS  Google Scholar 

  79. Paddison, S.J., Paul, R., and Zawodzinski Jr, T.A. (1999). Proton Conducting Membrane Fuel Cells II, vol. 98–27 of The Electrochemical Society Proceedings Series, (eds. Gottesfeld, S., and Fuller, T.F.), p. 106–120. New Jersey: The Electrochemical Society.

    Google Scholar 

  80. Paddison, S.J., Paul, R., and Zawodzinski Jr, T.A. J. Electrochem. Soc., 2000, 147, p. 617.

    Article  Google Scholar 

  81. Paddison, S.J., Paul, R., and Zawodzinski Jr, T.A. J. Chem. Phys., 2001, 115, p. 7753.

    Article  ADS  Google Scholar 

  82. Paddison, S.J., Paul, R., and Pivovar, B.S. (2001). Direct Methanol Fuel Cells, vol. 01–04 of The Electrochemical Society Proceedings Series, (eds. Narayanan, S., Gottesfeld, S., and Zawodzinski, T.A.), p. 8–13. New Jersey: The Electrochemical Society.

    Google Scholar 

  83. Paddison, S.J., Paul, R., Kreuer, K.-D., and Zawodzinski Jr, T.A. Direct Methanol Fuel Cells, vol. 01–04 of The Electrochemical Society Proceedings Series, (eds. Narayanan, S., Gottesfeld, S., and Zawodzinski, T. A.), p. 29–33. New Jersey: The Electrochemical Society.

    Google Scholar 

  84. Paddison, S.J., Paul, R., and Kreuer, K.-D. Phys. Chem. Chem. Phys., 2002, 4, p. 1151.

    Article  Google Scholar 

  85. Paddison, S.J., and Paul, R. Phys. Chem. Chem. Phys., 2002, 4, p. 1158.

    Article  Google Scholar 

  86. Paul, R., and Paddison, S.J. J. Chem. Phys., 2001, 115, p. 7762.

    Article  ADS  Google Scholar 

  87. Paul, R., and Paddison, S.J. Phys. Rev. E, 2003, 67, p. 016108.

    Article  MathSciNet  ADS  Google Scholar 

  88. PAul, R., and Paddison, S.J. Solid State Ionics, 2004, 168, p. 245.

    Article  Google Scholar 

  89. Eikerling, M., Paddison, S.J., and Zawodzinski Jr., T.A. J. New. Mat. Electr. Sys., 2002, 5, p. 15.

    Google Scholar 

  90. Eikerling, M., Paddison, S.J., Pratt, L.R., and Zawodzinski Jr, T.A. Chem. Phys. Lett., 2003, 368, p. 108.

    Article  ADS  Google Scholar 

  91. Eikerling, M., Paddison, S.J., Pratt, L.R., and Zawodzinski Jr, T.A. Chem. Phys. Lett., 2003, 368, p. 108.

    Article  ADS  Google Scholar 

  92. Hartnig, C., and Spohr, E., in preparation.

    Google Scholar 

  93. Greeley, J., and Mavrikakis, M. J. Am. Chem. Soc., 2002, 124, p. 7193.

    Article  Google Scholar 

  94. Ishikawa, Y., Liao, M.-S., and Cabrera, C.R. Surf. Sci., 2000, 463, p. 66.

    Article  ADS  Google Scholar 

  95. Jusys, Z., Kaiser, J., and Behm, R.J. Langmuir, 2003, 19, p. 6759.

    Article  Google Scholar 

  96. Schmitz, H., unpublished results.

    Google Scholar 

  97. Zawodzinski Jr., T.A., Springer, T.E., Davey, J., Jestel, R., Lopez, C., Valerio, J., and Gottesfeld, S. J. Electrochem. Soc., 1993, 140, p. 1981.

    Article  Google Scholar 

  98. Edmondson, C., Stallworth, P., Chapman, M., Fontanella, J., Wintersgill, M., Chung, S., and Greenbaum, S. Solid State Ionics, 2000, 135, p. 419.

    Article  Google Scholar 

  99. Edmondson, C.A., and Fontanella, J.J. Solid State Ionics, 2002, 152–153, p. 355.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this paper

Cite this paper

Spohr, E. (2005). Proton Transport in Polymer Electrolyte Fuel Cell Membranes. In: Henderson, D., Holovko, M., Trokhymchuk, A. (eds) Ionic Soft Matter: Modern Trends in Theory and Applications. NATO Science Series II: Mathematics, Physics and Chemistry, vol 206. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3659-0_14

Download citation

Publish with us

Policies and ethics