Skip to main content

Abstract

During the co-evolution of plants and their pathogens, the pathogens developed a wide variety of strategies to infect and exploit their hosts. In response to this pressure, plants countered by deploying a range of defense mechanisms. Some of these are conceptually simple, for example defenses based on physical barriers such as the cell wall or cuticle, or resistance engendered by pre-existing antimicrobial compounds (Osbourn 1996). However, certain resistance mechanisms, most particularly those that are inducible, are complex in nature and have proved to be more difficult to understand, particularly with respect to resistance to viruses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abbink, T. E. M., Tjernberg, P. A., Bol, J. F. and Linthorst, H. J. M. 1998. Tobacco mosaic virus helicase domain induces necrosis in N gene-carrying tobacco in the absence of virus replication. Molec. Plant-Microbe Interact. 11: 1242–1246.

    CAS  Google Scholar 

  • Ahlquist, P. 2002. RNA-dependent RNA polymerases, viruses, and RNA silencing. Science 296: 1270–1273.

    PubMed  CAS  Google Scholar 

  • Akad, F. Teverovsky, E., David, A., Czosnek, H., Gidoni, D., Gera, A. and Loebenstein, G. 1999. A cDNA from tobacco codes for an inhibitor of virus replication (IVR)-like protein. Plant Mol. Biol. 40: 969–976.

    PubMed  CAS  Google Scholar 

  • Alexander, D., Goodman, R.M., Gut-Rella, M., Glascock, C., Weymann, K., Friedrich, L., Maddox, D., Ahl-Goy, P., Luntz, T., Ward, E., and Ryals, J. 1993. Increased tolerance to two oomycete pathogens in transgenic tobacco expressing pathogenesis-related protein-1a. Proc. Natl. Acad. Sci. USA 90: 7327–7331.

    PubMed  CAS  Google Scholar 

  • Baulcombe, D.C. 2001. RNA silencing. Diced defence. Nature 409: 295–296.

    PubMed  CAS  Google Scholar 

  • Bendahmane, A., Kahm, B. A., Dedi, C., and Baulcombe, D. C. 1995. The coat protein of potato virus X is a strain specific elicitor of Rx1-mediated virus resistance in potato. Plant J. 8: 933–941.

    PubMed  CAS  Google Scholar 

  • Bendahmane, A., Kanyuka, K. and Baulcombe, D.C. 1997. High-resolution genetical and physical mapping of the Rx gene for extreme resistance to potato virus X in tetraploid potato. Theor. Appl. Genet. 95: 153–162.

    CAS  Google Scholar 

  • Bergelson, J., Kreitman, M., Stahl, E.A. and Tian, D. 2001. Evolutionary dynamics of plant R-genes. Science 292: 2281–2285.

    PubMed  CAS  Google Scholar 

  • Bergstrom, G.C., Johnson, M.C., and KuĆ, J. 1982. Effects of local infection of cucumber by Colletotrichum lagenarium, Pseudomonas lachrymans or tobacco necrosis virus on systemic resistance to cucumber mosaic virus. Phytopathology 72: 922–925.

    Google Scholar 

  • Bi, Y., Kenton, P., Mur, L., Darby, R., and Draper, J. 1995. Hydrogen peroxide does not function downstream of salicylic acid in the induction of PR protein expression. Plant J. 8: 235–245.

    PubMed  CAS  Google Scholar 

  • Birch, P. R J., Avrova, A. O., Dellagi, A., Lacomme, C., Santa Cruz, S., and Lyon, G. D. 2000. Programmed cell death in plants in response to pathogen attack. In: Dickinson, M., and Beynon, J. (eds.), Molecular Plant Pathology, Volume 4. CRC Press, Sheffield, U. K., pp. 175–197.

    Google Scholar 

  • Bucher, G. L., Tarina, C., Heinlein, M., Di Serio, F., Meins, F. Jr, Iglesias, V.A. 2001. Local expression of enzymatically active class I α-1,3-glucanase enhances symptoms of TMV infection in tobacco. Plant J. 28: 361–369.

    PubMed  CAS  Google Scholar 

  • Buck, K.W. 1996. Comparison of the replication of positive stranded RNA viruses of plant and animals. Adv. Virus Res. 47: 159–251.

    PubMed  CAS  Google Scholar 

  • Cao, H., Bowling, S.A., Gordon, A.S., and Dong, X. 1994. Characterization of an Arabidopsis mutant that is nonresponsive to inducers of systemic acquired resistance. Plant Cell 6: 1583–1592.

    PubMed  CAS  Google Scholar 

  • Cao H., Glazebrook, J., Clarke, J. D., Volko, S., and Dong X. 1997. The Arabidopsis NPR1 gene that controls systemic acquired resistance encodes a novel protein containing ankyrin repeats. Cell 88: 57–63.

    PubMed  CAS  Google Scholar 

  • Carrington, J.C. 1999. Reinventing plant virus movement. Trends Microbiol. 8: 312–313.

    Google Scholar 

  • Chivasa, S., and Carr, J. P. 1998. Cyanide restores N gene-mediated resistance to tobacco mosaic virus in transgenic tobacco expressing salicylic acid hydroxylase. Plant Cell 10: 1489–1498.

    PubMed  CAS  Google Scholar 

  • Chivasa, S., Murphy, A. M., Naylor, M., and Carr, J. P. 1997. Salicylic acid interferes with tobacco mosaic virus replication via a novel salicylhydroxamic acid-sensitive mechanism. Plant Cell 9: 547–557.

    PubMed  CAS  Google Scholar 

  • Chong, J., Baltz, R., Schmitt, C., Beffa, R., Fritig, B., and Saindrenan, P. 2002. Downregulation of a pathogen-responsive tobacco UDP-Glc:phenylpropanoid glucosyltransferase reduces scopoletin glucoside accumulation, enhances oxidative stress, and weakens virus resistance. Plant Cell 14: 1093–1107.

    PubMed  CAS  Google Scholar 

  • Citovsky, V., Ghoshroy, S., Tsui, F., and Klessig, D.F. 1998. Non-toxic concentrations of cadmium inhibit systemic movement of turnip vein clearing virus by a salicylic acidindependent mechanism Plant J. 16: 13–20.

    PubMed  CAS  Google Scholar 

  • Cole, A. B., Kiraly, L., Ross, K., and Schoelz, J. E. 2001. Uncoupling resistance from cell death in the hypersensitive response of Nicotiana species to Cauliflower mosaic virus infection. Molec. Plant Microbe Interact. 14: 31–41.

    CAS  Google Scholar 

  • Cooley, M. B., Pathirana, S., Wu, H-J., Kachroo, P., and Klessig, D. F. 2000. Members of the Arabidopsis HRT/RPP8 family of resistance genes confer resistance to both viral and oomycete pathogens. Plant Cell 12: 663–676.

    PubMed  CAS  Google Scholar 

  • Culver J. N., and Dawson, W. O. 1989. Tobacco mosaic virus coat protein — an elicitor of the hypersensitive reaction but not required for the development of mosaic symptoms in Nicotiana sylvestris. Virology 173: 755–758.

    PubMed  CAS  Google Scholar 

  • Culver, J. N., Stubbs, G., and Dawson W. O. 1994. Structure-function relationship between tobacco mosaic-virus coat protein and hypersensitivity in Nicotiana sylvestris. J. Mol. Biol. 242: 130–138.

    PubMed  CAS  Google Scholar 

  • Cutt, J. R., Harpster, M. H., Dixon, D. C., Carr, J. P., Dunsmuir, P., and Klessig, D. F. 1989. Disease response to tobacco mosaic virus in transgenic tobacco plants that constitutively express the pathogenesis-related PR1b gene. Virology 173: 89–97.

    PubMed  CAS  Google Scholar 

  • Dangl, J. L., and Jones, J. D. G. 2001. Plant pathogens and integrated defence responses to infection. Nature 411: 826–833.

    PubMed  CAS  Google Scholar 

  • Darby, R. M., Maddison, A., Mur, L. A. J., Bi, Y-M., and Draper, J. 2000. Cell-specific expression of salicylate hydroxylase in an attempt to separate localized HR and systemic signalling establishing SAR in tobacco. Mol. Plant Pathol. 1: 115–123.

    CAS  Google Scholar 

  • Delaney, T. P., Friedrich, L., and Ryals, J. A. 1995. Arabidopsis signal-transduction mutant defective in chemically and biologically induced disease resistance. Proc. Natl Acad. Sci. USA 92: 6602–6606.

    PubMed  CAS  Google Scholar 

  • Delaney, T. P., Ukness, S., Vernoij, B., Friedrich, L., Weymann, K., Negrotto, D., Gaffney, T., Gut-Rella, M., Kessmann, H., and Ryals, J. 1994. A central role of salicylic acid in plant disease resistance. Science 266: 1247–1250.

    CAS  Google Scholar 

  • Dempsey, D. A., Shah, J., and Klessig, D. F. 1999. Salicylic acid and disease resistance in plants. Critical Rev. Plant Sci. 18: 547–575.

    CAS  Google Scholar 

  • Després, C., Chubak, C., Rochon, A., Clark, R., Bethune, T., Desveaux, D. and Fobert, P.R. 2003. The Arabidopsis NPR1 disease resistance protein is a novel cofactor that confers redox regulation of DNA binding activity to the basic domain/leucine zipper transcription factor TGA1. Plant Cell 15: 2181–2191.

    PubMed  Google Scholar 

  • Dinesh-Kumar, S. P., Whitham, S., Choi, D., Hehl, R., Corr, C., and Baker, B. 1995. Transposon tagging of tobacco mosaic virus resistance gene N: Its possible role in the TMV-N-mediated signal transduction pathway. Proc. Natl. Acad. Sci. USA 92: 4175–4180.

    PubMed  CAS  Google Scholar 

  • Dixon, R.A. 2001. Natural products and plant disease resistance. Nature 411: 843–847.

    PubMed  CAS  Google Scholar 

  • Dixon, R.A., Achine, L., Kota, P., Liu, C.-J., Srinivasa Reddy, M.S. and Wang, L. 2002. The phenylpropanoid pathway and plant defence-A genomics perspective. Molec. Plant Pathol. 3: 371–390.

    CAS  Google Scholar 

  • Erickson, F. L., Holzberg, S., Calderon-Urrea, A., Handley, V., Axtell, M., Corr, C., and Baker, B. 1999. The helicase domain of the TMV replicase proteins induces the N-mediated defence response in tobacco. Plant J. 18: 67–75.

    PubMed  CAS  Google Scholar 

  • Flor, H.H. 1971. Current status of the gene-for-gene concept. Annu. Rev. Phytopath. 9: 275–296.

    Google Scholar 

  • Friedrich, L., Lawton, K., Ruess, W., Masner, P., Specker, N., Gut-Rella, M., Meier, B., Dincher, S., Staub, T., Uknes, S., Metreaux, J.-P., Kessmann, H., and Ryals, J. 1996. A benzothiadiazole derivative induces systemic acquired resistnce in tobacco. Plant J. 10: 60–70.

    Google Scholar 

  • Gaffney, T., Friedrich, L., Vernoij, B., Negrotto, D., Nye, G., Ukness, S., Ward, E., Kessmann, H., and Ryals, J. 1993. Requirement of salicylic acid for the induction of systemic acquired resistance. Science 261: 754–756.

    CAS  Google Scholar 

  • Ghoshroy, S., Freedman, K., Lartey, R. & Citovsky, V. 1998 Inhibition of plant viral systemic infection by non-toxic concentrations of cadmium. Plant J. 13: 591–602.

    PubMed  CAS  Google Scholar 

  • Gianinazzi, S., Martin, C. and Vallée, J.-C. 1970. Hypersensibilité aux virus, température et protiénes solubles chez le Nicotiana ‘Xanthi nc’. Apparition de nouvelles macromolécules lors de la répression de la synthèse virale. C.R. Acad. Sci. Paris D 270: 2383–2386.

    CAS  Google Scholar 

  • Gilchrist, D.G. 1998. Programmed cell death in plant disease: the purpose and promise of cellular suicide. Annu. Rev. Phytopathol. 36: 393–414.

    PubMed  CAS  Google Scholar 

  • Gilliland, A., Singh, D.P., Hayward, J.M., Moore, C.A., Murphy, A.M., York, C.J., Slator, J. and Carr, J.P. 2003. Genetic modification of alternative respiration has differential effects on antimycin A-induced versus salicylic acid-induced resistance to Tobacco mosaic virus. Plant Physiol. 132: 1518–1528.

    PubMed  CAS  Google Scholar 

  • Gilliland, A., Murphy, A.M., Wong, C.E., Carson, R.A.J. and Carr, J.P. 2005. Mechanisms involved in induced resistance to plant viruses. In Multigenic and Induced Systemic Resistance, S. Tuzun and E. Bent Kluwer (eds.) Academic Publishers. In press.

    Google Scholar 

  • Glazebrook, J., Rogers, E.E., and Ausubel, F. M. 1996. Isolation of Arabidopsis mutants with enhanced disease susceptibility by direct screening. Genetics 143: 973–982.

    PubMed  CAS  Google Scholar 

  • Goodman, R. N., and Novacky, A. J. 1994. The hypersensitive reaction in plants to pathogens. A resistance phenomenon. APS Press, St. Paul MN.

    Google Scholar 

  • Görlach, J., Volrath, S., Knauf-Beiter, G., Hengy, G., Oostendorp, M., Staub, T., Ward, E., Kessman, H., and Ryals, J. 1996. Benzothiadiazole, a novel class of inducers of systemic acquire resistance, activates genes expression and disease resistance in wheat. Plant Cell 8: 629–643.

    PubMed  Google Scholar 

  • Hammerschmidt, R. 1999. Phytoalexins: What have we learned after 60 years? Annu. Rev. Phytopathol. 37: 285–306.

    PubMed  CAS  Google Scholar 

  • Hammerschmidt, R., Métraux, J.-P. and van Loon, L.C. (eds.) Papers Presented at the First International Symposium on Induced Resistance to Plant Diseases, Corfu, May 2000. 2001. Eur. J. Plant Pathol. 107: 1–146.

    Google Scholar 

  • Hammond-Kosack, K. E., and Jones, J. D. G. 1996. Resistance gene-dependent plant defense responses. Plant Cell 8: 1773–1791.

    PubMed  CAS  Google Scholar 

  • Hanley-Bowdoin, L., Settlage, S. B., Orozco, B.M., Nagar, S., Robertson, D. 1999. Geminiviruses: Models for plant DNA replication, transcription, and cell cycle regulation Crit. Rev. Plant Sci. 18: 71–106.

    CAS  Google Scholar 

  • Hatsugai, N., Kuroyanagi, M., Yamada, K., Meshi, T., Tsuda, S., Kondo, M., Nishimura, M. and Hara-Nishimura, I. 2004. A plant vacuolar protease, VPE, mediates virusinduced hypersensitive cell death. Science 305: 855–858.

    PubMed  CAS  Google Scholar 

  • Heath, M.C. 2000. Hypersensitive response-related death. Plant Mol. Biol. 44: 321–334.

    PubMed  CAS  Google Scholar 

  • Heinlein, M. 2002. The spread of Tobacco Mosaic Virus infection: insights into the cellular mechanism of RNA transport. Cell. Mol. Life Sci. 59: 58–82.

    PubMed  CAS  Google Scholar 

  • Hohn, T., and Futterer, J. 1997. The proteins and functions of plant pararetroviruses: Knowns and unknowns. Crit. Rev. Plant Sci. 16: 133–161.

    CAS  Google Scholar 

  • Hooft van Huijsduijnen, R. A. M., Alblas, S. W., DeRijk, R. H., and Bol, J. F. 1986. Induction by salicylic acid of pathogenesis-related proteins and resistance to alfalfa mosaic virus in various plant species. J. Gen. Virol. 67: 2135–2143.

    CAS  Google Scholar 

  • Hull, R. 2002. Matthews’ Plant Virology, 4th edn. Academic Press, London.

    Google Scholar 

  • Jakab, G., Cottier, V., Toquin, V., Rigoli, G., Zimmerli, L., Métraux, J.-P., and Mauch-Mani, B. 2001. β-Aminobutyric acid-induced resistance in plants. Eur. J. Plant Pathol. 107: 29–37.

    CAS  Google Scholar 

  • Ji, L.-H., and Ding, S.-W. 2001. The suppressor of transgene RNA silencing encoded by Cucumber mosaic virus interferes with salicylic acid-mediated virus resistance. Molec.Plant-Microbe Interact. 6: 715–724.

    Google Scholar 

  • Jones, D. A. 2000. Resistance genes and resistance protein function. In: Dickinson, M., and Beynon, J. (eds.), Molecular Plant Pathology, Volume 4. CRC Press, Sheffield, U. K., pp. 108–143.

    Google Scholar 

  • Kachroo, P. Yoshioka, K., Shah, J., Dooner, H. K., and Klessig, D.F. 2000. Resistance to turnip crinkle virus in Arabidopsis is regulated by two host genes and is salicylic acid dependent but NPR1, ethylene, and jasmonate independent. Plant Cell 12: 677–690.

    PubMed  CAS  Google Scholar 

  • Kessmann, H., Staub, T., Hoffmann, C., Maetzke, T., Herzog, J., Ward, E., Uknes, S., and Ryals, J. 1994. Induction of systemic acquired resistance in plants by chemicals. Annu. Rev. Phytopathol. 32: 439–459.

    CAS  Google Scholar 

  • Kim, C.H., and Palukaitis, P. 1997. The plant defense response to cucumber mosaic virus in cowpea is elicited by the viral polymerase gene and affects virus accumulation in single cells. EMBO J. 16: 4060–4068.

    PubMed  CAS  Google Scholar 

  • Kombrink, E., and Schmelzer, E. 2001. The hypersensitive response and its role in local and systemic disease resistance. Eur J. Plant Pathol. 107: 69–78.

    Google Scholar 

  • KuĆ, J. 1995. Phytoalexins, stress metabolism, and disease resistance in plants. Ann. Rev. Phytopathol. 33: 275–297.

    Google Scholar 

  • KuĆ, J. 2001. Concepts and direction of induced systemic resistance in plants and its application. Eur. J. Plant Pathol. 107: 7–12.

    Google Scholar 

  • Lacomme, C., and Santa Cruz, S. 1999. Bax-induced cell death in tobacco is similar to the hypersensitive response. Proc. Natl. Acad. Sci. USA 96: 7956–7961.

    PubMed  CAS  Google Scholar 

  • Lam, E., and del Pozo, O. 2000. Caspase-like involvement in the control of plant cell death. Plant Mol. Biol. 44: 417–428.

    PubMed  CAS  Google Scholar 

  • Lanfermeijer, F.C., Dijkhuis, J., Sturre, M.J.G., de Haan, P and Hille, J. 2003. Cloning and characterisation of the durable tomato mosaic virus resistance gene Tm-2 2 from Lycopersicon esculentum. Plant Mol. Biol. 52: 1037–1049.

    PubMed  CAS  Google Scholar 

  • Lawton, K.A., Friedrich, L., Hunt, M., Weymann, K., Delaney, T., Kessmann, H., Staub, T., and Ryals, J. 1996. Benzothiadiazole induces disease resistance in Arabidopsis by activation of the systemic acquired resistance signal transduction pathway. Plant J. 10: 71–82.

    PubMed  CAS  Google Scholar 

  • Lebel, E., Heifetz, P., Thorne, L., Uknes, S., Ryals, J., and Ward, E. 1998. Functional analysis of regulatory sequences controlling PR-1 gene expression in Arabidopsis. Plant J. 16: 223–233.

    PubMed  CAS  Google Scholar 

  • Leisner, S.M. and Turgeon, R. 1993. Movement of virus and photoassimilate in the phloem — a comparative-analysis. Bioessays 15: 741–748.

    PubMed  CAS  Google Scholar 

  • Li, W.X., and Ding, S.W. 2001. Viral suppressors of RNA silencing. Curr. Opinion Biotech. 12: 150–154.

    CAS  Google Scholar 

  • Linthorst, H. J. M., Meuwissen, R. L. J., Kauffmann, S., and Bol, J.F. 1989. Constitutive expression of pathogenesis-related proteins PR-1, GRP and PR-S in tobacco has no effect on virus infection. Plant Cell 1: 285–291.

    PubMed  CAS  Google Scholar 

  • Loebenstein, G. and Gera, A. 1981. Inhibitor of virus replication released from tobacco mosaic virus-infected protoplasts of local lesion-responding cultivar. Virology 114: 132–139.

    CAS  Google Scholar 

  • Malamy, J., Carr, J.P., Klessig, D.F., and Raskin, I. 1990. Salicylic acid: a likely endogenous signal in the resistance response of tobacco to viral infection. Science 250: 1002–1004.

    CAS  Google Scholar 

  • Maldonado, A.M., Doerner P., Dixon, R.A., Lamb, C.J., and Cameron, R.K. 2002. A putative lipid transfer protein involved in systemic resistance signalling in Arabidopsis. Nature 419: 399–403.

    PubMed  CAS  Google Scholar 

  • Mauch, F., Hadwiger, L.A., and Boller, T. 1988. Antifungal hydrolases in pea tissue 1. Purification and characterization of two chitinases and two β-1, 3-glucanases differentially regulated during development and in response to fungal infection. Plant Physiol. 87: 325–333.

    PubMed  CAS  Google Scholar 

  • Mayers, C. N., Lee, K.-C., Moore, C. A., Wong, S.-M. and Carr J. P. 2005. Salicylic acid-induced resistance to Cucumber mosaic virus in squash and Arabidopsis thaliana: Contrasting mechanisms of induction and antiviral action. Mol. Plant-Microbe Interact. 18: 428–434.

    PubMed  CAS  Google Scholar 

  • Métraux, J.-P., Signer, H., Ryals, J., Ward, E., Wyssbenz, M., Gaudin, J., Raschdorf, K., Schmid, E., Blum, W., and Inverardi, B. 1990. Increase in salicylic acid at the onset of systemic acquired resistance in cucumber. Science 250: 1004–1006.

    Google Scholar 

  • Mittler, R., Shulaev, V., Seskar, M., and Lam, E. 1996. Inhibition of programmed cell death in tobacco plants during pathogen-induced hypersensitive response at low oxygen pressure. Plant Cell 8: 1991–2001.

    PubMed  CAS  Google Scholar 

  • Moissiard, G. and Voinnet, O. 2004. Viral suppression of RNA silencing in plants. Mol. Plant Pathol. 5: 71–82.

    CAS  Google Scholar 

  • Mou, Z., Fan, W.H. and Dong, X. 2003. Inducers of plant systemic acquired resistance regulate NPR1 function through redox changes. Cell 113: 935–944.

    PubMed  CAS  Google Scholar 

  • Mur, L. A. J., Bi, Y.-M., Darby, R. M., Firek, S., and Draper, J. 1997. Compromising early salicylic acid accumulation delays the hypersensitive response and increases viral dispersal during lesion establishment in TMV-infected tobacco. Plant J. 12: 1113–1126.

    PubMed  CAS  Google Scholar 

  • Murphy, A.M. and Carr, J.P. 2002. Salicylic acid has cell-specific effects on Tobacco mosaic virus replication and cell-to-cell movement. Plant Physiology 128: 543–554.

    Google Scholar 

  • Murphy, A. M., Chivasa, S., Singh, D. P., and Carr, J. P. 1999. Salicylic acid-induced resistance to viruses and other pathogens: A parting of the ways? Trends Plant Sci. 4: 155–160.

    PubMed  Google Scholar 

  • Murphy, A.M., Gilliland, A., Wong, C.E., West, J., Singh, D.P. and Carr, J.P. 2001. Induced resistance to viruses. Eur.J. Plant Pathol. 107: 121–128.

    CAS  Google Scholar 

  • Murphy, A.M., Gilliland, A., York, C.J., Hyman, B. and Carr, J.P. 2004. High-level expression of alternative oxidase protein sequences enhances the spread of viral vectors in resistant and susceptible plants. J. Gen. Virol. 85: 3777–3786.

    PubMed  CAS  Google Scholar 

  • Nawrath, C. and Métraux, J.-P. 1999. Salicylic acid induction-deficient mutants of Arabidopsis express PR-2 and PR-5 and accumulate high levels of camalexin after pathogen inoculation. Plant Cell 11: 1393–404.

    PubMed  CAS  Google Scholar 

  • Naylor, M. 1999. The effects of salicylic acid on RNA plant viruses. University of Cambridge, PhD Thesis.

    Google Scholar 

  • Naylor, M., Murphy, A. M., Berry, J. O., and Carr, J. P. 1998. Salicylic acid can induce resistance to plant virus movement. Molec. Plant-Microbe Interact. 11: 860–868.

    CAS  Google Scholar 

  • Nelson, R. S. and van Bel, A. J. E. 1998. The mystery of virus trafficking into, through and out of the vascular tissue. Prog. Botany 59: 476–533.

    Google Scholar 

  • Niderman, T., Genetet, I., Bruyère, T., Gees, R., Stintzi, A., Legrand, M., Fritig, B., and Mösinger, E. 1995. Pathogenesis-related PR-1 proteins are antifungal. Plant Physiol. 108: 17–27.

    PubMed  CAS  Google Scholar 

  • Oparka, K.J. and Santa Cruz, S. 2000. The great escape: Phloem transport and unloading of macromolecules. Annu. Rev. Plant Physiol. and Plant Mol. Biol. 51: 323–347.

    CAS  Google Scholar 

  • Oostendorp, M. Kunz, W., Dietrich, B., and Staub, T. 2001. Induced resistance in plants by chemicals. Eur. J. Plant Path. 107: 19–28.

    CAS  Google Scholar 

  • Osbourn, A. 1996. Preformed antimicrobial compounds and plant defense against fungal attack. Plant Cell 8: 1821–1831.

    PubMed  CAS  Google Scholar 

  • Otsuki, Y., Shimomura, T., and Takebe, I. 1972. Tobacco mosaic virus multiplication and expression of the N gene in necrotic responding tobacco varieties. Virology 50: 45–50.

    PubMed  CAS  Google Scholar 

  • Padgett, H. S., Watanabe, Y., and Beachy, R. N. 1997. Identification of the TMV replicase sequence that activates the N gene-mediated hypersensitive response. Molec. Plant Microbe Interact. 10: 709–715.

    CAS  Google Scholar 

  • Pennell, R. I., and Lamb, C. 1997. Programmed cell death in plants. Plant Cell 9: 1157–1168.

    PubMed  CAS  Google Scholar 

  • Rauscher, M., Adam, A.L., Wirtz, S., Guggenheim, R., Mendgen, K., and Deising, H.B. 1999. PR-1 protein inhibits the differentiation of rust infection hyphae in leaves of acquired resistant broad bean. Plant J. 19: 625–633.

    PubMed  CAS  Google Scholar 

  • Ross, A.F. 1961a. Localized acquired resistance to plant virus infection in hypersensitive hosts. Virology 14: 329–339.

    PubMed  CAS  Google Scholar 

  • Ross, A.F. 1961b. Systemic acquired resistance induced by localized virus infections in plants. Virology 14: 340–358.

    PubMed  CAS  Google Scholar 

  • Ross, A. F. 1966. Systemic effects of local lesion formation. In: Beemster, A. B. R. and Dijkstra, J. (eds.), Viruses of Plants, North Holland Publishing, Amsterdam, pp 127–150.

    Google Scholar 

  • Ryals, J., Lawton, K.A., Delaney, T.P., Friedrich, L, Kessmann, H., Neuenschwander, U.H., Uknes S., Vernooij, B., and Weymann, K. 1995. Signal transduction in systemic acquired resistance. Proc. Natl Acad. Sci. USA 92: 4202–4205.

    PubMed  CAS  Google Scholar 

  • Ryals, J., Weymann, K., Lawton, K., Friedrich, L., Ellis, D., Steiner, H. Y., Johnson, J., Delaney, T. P., Jesse, T., Vos, P., and Uknes, S. 1997. The Arabidopsis NIM1 protein shows homology to the mammalian transcription factor inhibitor I kappa B. Plant Cell 9: 425–439.

    PubMed  CAS  Google Scholar 

  • Schenk, P. M., Kazan, K., Wilson, I., Anderson, J. P., Richmond, T., Somerville, S. C., and Manners, J. M. 2000. Coordinated plant defense responses in Arabidopsis revealed by microarray analysis. Proc. Natl. Acad. Sci. USA 97: 11655–11660.

    PubMed  CAS  Google Scholar 

  • Schlumbaum, A., Mauch, F., Vogeli, U., and Boller, T. 1986. Plant chitinases are potent inhibitors of fungal growth. Nature 324: 365–367.

    CAS  Google Scholar 

  • Shah, J, Tsui, F, and Klessig, D. F. 1997. Characterization of a salicylic acid-insensitive mutant sai1 of Arabidopsis thaliana, identified in a selective screen utilizing the SA-inducible expression of the tms2 gene. Molec. Plant-Microbe Interact. 10: 69–78.

    CAS  Google Scholar 

  • Singh, D.P. Moore, C.A. Gilliland, A. and Carr, J.P. 2004. Activation of multiple antiviral defence mechanisms by salicylic acid. Mol. Plant Pathol. 5: 57–63.

    CAS  Google Scholar 

  • Spiegel, S., Gera., A, Salomon, R., Ahl, P., Harlap, S. and Loebenstein, G. 1989. Recovery of an inhibitor of virus replication from the intercellular fluid of hypersensitive tobacco infected with tobacco mosaic or from induced-resistant tissue. Phytopathology 79: 258–262.

    CAS  Google Scholar 

  • Ueki, S., and Citovsky, V. 2001. Inhibition of systemic onset of post-transcriptional gene silencing by non-toxic concentrations of cadmium. Plant J. 28: 283–291.

    PubMed  CAS  Google Scholar 

  • Ueki, S., and Citovsky, V. 2002. The systemic movement of a tobamovirus is inhibited by a cadmium ion-induced glycine-rich protein. Nature Cell Biology 4: 478–485.

    PubMed  CAS  Google Scholar 

  • van Loon, L.C., and van Kammen, A. 1970. Polyacrylamide gel electrophoresis of the soluble leaf proteins from Nicotiana tabacum var.’ samsun’ and’ samsun NN’. II. Changes in protein constitution after infection with tobacco mosaic virus. Virology 40: 199–211

    Google Scholar 

  • van Loon, L. C., and van Strien, E. A. 1999. The families of pathogenesis-related proteins, their activities, and comparative analysis of PR-1 type proteins. Physiol. Molec. Plant Pathol. 55: 85–97.

    Google Scholar 

  • Vernooij, B., Friedrich, L., Morse, A., Reist, R., Kolditzjawhar, R., Ward, E., Uknes, S., Kessmann, H., and Ryals, J. 1994. Salicylic acid is not the translocated signal responsible for inducing systemic acquired-resistance but is required in signal transduction. Plant Cell 6: 959–965.

    PubMed  CAS  Google Scholar 

  • Ward, E. R., Uknes, S. J., Williams, S. C., Dincher, S. S., Wiederhold, D. L., Alexander, D. C., Ahl-Goy, P., Metreaux, J. P., and Ryals, J. A. 1991. Coordinate gene activity in response to agents that induce systemic acquired resistance. Plant Cell 3: 1085–1094.

    PubMed  CAS  Google Scholar 

  • Waterhouse, P. M., Smith, N. A., and Wang, M.-B. 1999. Virus resistance and gene silencing: killing the messenger. Trends Plant Sci. 4: 452–457.

    PubMed  Google Scholar 

  • Waterhouse, P. M., Wang, M.-B., and Lough, T. 2001. Gene silencing as an adaptive defence against viruses. Nature 411: 834–842.

    PubMed  CAS  Google Scholar 

  • Weber, H., and Pfitzner, A. J. 1998. Tm-22 resistance in tomato requires recognition of the carboxy terminus of the movement protein of tomato mosaic virus. Molec. Plant-Microbe Interact. 11: 498–503.

    CAS  Google Scholar 

  • Weststeijn, E.A. 1981. Lesion growth and virus localization in leaves of Nicotiana tabacum cv. Xanthi nc. after inoculation with tobacco mosaic virus and incubation alternately at 22°C and 32° C. Physiol. Plant Pathol. 18: 357–368

    Google Scholar 

  • White, R.F. 1979. Acetylsalicylic acid aspirin induces resistance to tobacco mosaic virus in tobacco. Virology 99: 410–412.

    CAS  Google Scholar 

  • White, R.F., Antoniw, J.F., Carr, J.P., and Woods, R.D. 1983. The effects of aspirin and polyacrylic acid on the multiplication and spread of TMV in different cultivars of tobacco with and without the N-gene. Phytopathol. Z. 107: 224–232.

    CAS  Google Scholar 

  • Wong, C. E., Carson, R. A. J., and Carr, J. P. 2002. Chemically-induced virus resistance in Arabidopsis thaliana is independent of pathogenesis-related protein expression and the NPR1 gene. Molec. Plant-Microbe Interact. 15: 75–81.

    CAS  Google Scholar 

  • Wright, K. M., Duncan, G. H., Pradel, K. S., Carr, F., Wood, S., Oparka, K. J., and Santa Cruz, S. 2000. Analysis of the N gene hypersensitive response induced by a fluorescently tagged tobacco mosaic virus. Plant Physiol. 123: 1375–1385.

    PubMed  CAS  Google Scholar 

  • Xie, Z.X., Fan, B.F., Chen, C.H. and Chen, Z.X. 2001. An important role of an inducible RNA-dependent RNA polymerase in plant antiviral defense. Proc. Natl. Acad. Sci. USA 98: 6516–6521.

    PubMed  CAS  Google Scholar 

  • Yang S.-J., Carter S. A., Cole A. B., Cheng N.-H. and Nelson R. S. 2004. A natural variant of a host RNA-dependent RNA polymerase is associated with increased susceptibility to viruses by Nicotiana benthamiana. Proc. Natl. Acad. Sci. USA 101: 6297–6302.

    PubMed  CAS  Google Scholar 

  • Yoshioka, K., Nakashita, H., Klessig, D. F., and Yamaguchi, I. 2001. Probenozole induces systemic acquired resistance in Arabidopsis with a novel type of action. Plant J. 25: 149–157.

    PubMed  CAS  Google Scholar 

  • Yu, D. Q., Fan, B. F., MacFarlane, S. A. and Chen, Z. X. 2003. Analysis of the involvement of an inducible Arabidopsis RNA-dependent RNA polymerase in antiviral defense. Mol. Plant-Microbe Interact. 16: 206–216.

    PubMed  CAS  Google Scholar 

  • Zhou, J.-M., Trifa, Y., Silva, H., Pontier, D.F., Lam, E., Shah, J., and Klessig, D.F. 2000. NPR1 differentially interacts with members of the TGA/OBF family of transcription factors that bind an element of the PR-1 gene required for induction by salicylic acid. Molec. Plant-Microbe Interact. 13: 191–202.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Gilliland, A., Murphy, A.M., Carr, J.P. (2006). Induced Resistance Mechanisms. In: Loebenstein, G., Carr, J.P. (eds) Natural Resistance Mechanisms of Plants to Viruses. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3780-5_6

Download citation

Publish with us

Policies and ethics