Skip to main content

Part of the book series: NATO Science Series II: Mathematics, Physics and Chemistry ((NAII,volume 217))

Abstract

In this paper we discuss topological problems inspired by robotics. We study in detail the robot motion planning problem. With any path-connected topological space X we associate a numerical invariant TC(X) measuring the “complexity of the problem of navigation in X.„We examine how the number TC(X) determines the structure of motion planning algorithms, both deterministic and random.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abrams, A. (2002) Configuration spaces of colored graphs, Geom. Dedicata 92, 185–194.

    Article  MATH  MathSciNet  Google Scholar 

  • Adem, J., Gitler, S., and James, I. M. (1972) On axial maps of a certain type, Bol. Soc. Mat. Mexicana(2) 17, 59–62.

    MathSciNet  MATH  Google Scholar 

  • Connelly, R., Demaine, E. D., and Rote, G. (2003) Straightening polygonal arcs and convexifying polygonal cycles, Discrete Comput. Geom. 30, 205–239.

    MathSciNet  MATH  Google Scholar 

  • Cornea, O., Lupton, G., Oprea, J., and Tanré, D. (2003) Lusternik–Schnirelmann category, Vol. 103 of Math. Surveys Monogr., Providence, RI, Amer. Math. Soc.

    Google Scholar 

  • Davis, D. M. (1993) Immersions of projective spaces: a historical survey, In M. C. Tangora (ed.), Algebraic Topology, Vol. 146 of Contemp. Math., Oaxtepec, 1991, pp. 31–37, Providence, RI, Amer. Math. Soc.

    Google Scholar 

  • Dold, A. (1972) Lectures on Algebraic Topology, Vol. 200 of Grundlehren Math. Wiss., Berlin, Springer.

    Google Scholar 

  • Eilenberg, S. and Ganea, T. (1957) On the Lusternik–Schnirelmann category of abstract groups, Ann. of Math. (2) 65, 517–518.

    MathSciNet  Google Scholar 

  • Fadell, E. and Neuwirth, L. (1962) Configuration spaces, Math. Scand. 10, 111–118.

    MathSciNet  MATH  Google Scholar 

  • Farber, M. (2003) Topological complexity of motion planning, Discrete Comput. Geom. 29, 211–221.

    MATH  MathSciNet  Google Scholar 

  • Farber, M. (2004) Instabilities of robot motion, Topology Appl. 140, 245–266.

    Article  MATH  MathSciNet  Google Scholar 

  • Farber, M. (2005) Collision free motion planning on graphs, In Algorithmic Foundations of Robotics.VI, Utrecht/Zeist, 2004, Berlin, Springer, to appear.

    Google Scholar 

  • Farber, M., Tabachnikov, S., and Yuzvinsky, S. (2003) Topological robotics: motion planning in projective spaces, Int. Math. Res. Not. 34, 1853–1870.

    MathSciNet  Google Scholar 

  • Farber, M. and Yuzvinsky, S. (2004) Topological robotics : subspace arrangements and collision free motion planning, In V. M. Buchstaber and I. M. Krichever (eds.), Geometry, Topology, and Mathematical Physics, Vol. 212 of Amer. Math. Soc. Transl. Ser. 2, Moscow, 2002–2003, pp. 145–156, Providence, RI, Amer. Math. Soc.

    Google Scholar 

  • Felix, Y. and Halperin, S. (1982) Rational LS category and its applications, Trans. Amer. Math. Soc. 273, 1–38.

    MathSciNet  MATH  Google Scholar 

  • Gal,Ś. (2001) Euler characteristic of the configuration space of a complex, Colloq. Math. 89, 61–67.

    Article  MATH  MathSciNet  Google Scholar 

  • Ghrist, R. (2001) Configuration spaces and braid groups on graphs in robotics, In J. Gilman, W. W. Menasco, and X.-S. Lin (eds.), Knots, Braids, and Mapping Class Groups—Papers Dedicated to Joan S. Birman, Vol. 24 of AMS/IP Stud. Adv. Math., New York, 1998, pp. 29–40, Providence, RI, Amer. Math. Soc. & Somerville, MA, International Press.

    Google Scholar 

  • Ghrist, R. W. and Koditschek, D. E. (2002) Safe cooperative robot dynamics on graphs, SIAM J. Control Optim. 40, 1556–1575.

    Article  MathSciNet  MATH  Google Scholar 

  • Hausmann, J.-C. and Knutson, A. (1998) Cohomology rings of polygon spaces, Ann. Inst. Fourier(Grenoble) 48, 281–321.

    MathSciNet  MATH  Google Scholar 

  • Jordan, D. and Steiner, M. (1999) Configuration spaces of mechamical linkages, Discrete Comput. Geom. 22, 297–315.

    MathSciNet  MATH  Google Scholar 

  • Kapovich, M. and Millson, J. J. (1996) The symplectic geometry of polygons in Euclidean space, J. Di.fferential Geom. 44, 479–513.

    MathSciNet  MATH  Google Scholar 

  • Kapovich, M. and Millson, J. J. (2002) Universality theorems for configuration spaces of planar linkages, Topology 41, 1051–1107.

    Article  MathSciNet  MATH  Google Scholar 

  • Klyachko, A. A. (1994) Spatial polygons and stable configurations of points in the projective line, In Algebraic Geometry and its Applications, Vol. E25 of Aspects Math., Yaroslavl’, 1992, pp. 67–84, Braunschweig, Vieweg.

    Google Scholar 

  • Lam, K. Y. (1967) Construction of nonsingular bilinear maps, Topology 6, 423–426.

    Article  MATH  MathSciNet  Google Scholar 

  • Latombe, J.-C. (1991) Robot Motion Planning, Dordrecht, Kluwer Acad. Publ.

    Google Scholar 

  • Lebesgue, H. (1950) Leçons sur les constructions géométriques, Paris, Gauthier-Villars.

    MATH  Google Scholar 

  • Milgram, R. J. (1967) Immersing projective spaces, Ann. of Math. (2) 85, 473–482.

    MATH  MathSciNet  Google Scholar 

  • Orlik, P. and Terao, H. (1992) Arrangements of Hyperplanes, Vol. 300 of Grundlehren Math. Wiss., Berlin, Springer.

    Google Scholar 

  • Schwartz, J. T. and Sharir, M. (1983) On the “piano movers” problem. II. General techniques for computing topological properties of real algebraic manifolds, Adv. in Appl. Math. 4, 298–351.

    Article  MathSciNet  MATH  Google Scholar 

  • Schwarz, A. S. (1966) The genus of a fiber space, Amer. Math. Soc. Transl. (2) 55, 49–140.

    Google Scholar 

  • Sharir, M. (1997) Algorithmic motion planning, In J. E. Goodman and J. O’Rourke (eds.), Handbook of Discrete and Computational Geometry, CRC Press Ser. Discrete Math. Appl., Boca Raton, FL, CRC Press, p. 733–754.

    Google Scholar 

  • Smale, S. (1987) On the topology of algorithms. I, J. Complexity 3, 81–89.

    Article  MATH  MathSciNet  Google Scholar 

  • Świątkowski, J. (2001) Estimates for the homological dimension of configuration spaces of graphs, Colloq. Math. 89, 69–79.

    MathSciNet  MATH  Google Scholar 

  • Thurston, W. (1987) Shapes of polyhedra, preprint.

    Google Scholar 

  • Vassil'iev, V. A. (1988) Cohomology of braid groups and complexity of algorithms, Funktsional. Anal. i Prilozhen. 22, 15–24, (Russian) ; English transl. in Funct. Anal. Appl. 22, 182–190.

    Google Scholar 

  • Walker, K. (1985) Configuration spaces of linkages, Undergraduate thesis, Princeton University.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this paper

Cite this paper

FARBER, M. (2006). TOPOLOGY OF ROBOT MOTION PLANNING. In: Biran, P., Cornea, O., Lalonde, F. (eds) Morse Theoretic Methods in Nonlinear Analysis and in Symplectic Topology. NATO Science Series II: Mathematics, Physics and Chemistry, vol 217. Springer, Dordrecht. https://doi.org/10.1007/1-4020-4266-3_05

Download citation

Publish with us

Policies and ethics