Skip to main content

Induction Properties of Synaptic Plasticity in Rat Prefrontal Neurons

  • Chapter
Prefrontal Cortex: From Synaptic Plasticity to Cognition
  • 307 Accesses

Abstract

In rat prelimbic (prefrontal) slices, layer I–II to layer V pyramidal neuron glutamatergic synapses show long-term depression (LTD) and potentiation (LTP) of synaptic strength. First, LTD is induced by high-frequency synaptic stimuli (100 pulses at 50 Hz, 4 times) in the presence of dopamine. Our analyses show that the synaptic responses and postsynaptic depolarization during high-frequency stimuli are larger in the presence of dopamine than in its absence. These dopamine effects are N-methyl-d-aspartate (NMDA) receptor-dependent. Second, LTP is induced by the same stimuli, in the presence of dopamine, if the synapses are previously exposed to dopamine. Interestingly, the synaptic responses and depolarization during the LTP-inducing high-frequency stimuli are smaller than those in control and LTD conditions. Third, LTP can also be induced by short burst-type stimuli without dopamine (5–10 pulses at 50 Hz, 5–6 times). With the short burst stimuli, prelimbic neurons show little inter-burst synaptic fatigue and fire to each burst episode, a property not seen in any of the groups in which the long trains of stimuli were applied. These data suggest that there are separate induction mechanisms for synaptic plasticity in rat prefrontal neurons. We will then discuss on functional implications of these LTP and LTD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abi-Dargham A, Mawlawi O, Lombardo I, Gil R, Martinez D, Huang Y, Hwang D-R, Keilp J, Kochan L, Van Heertum R, Gorman JM, Laruelle M (2002) Prefrontal dopamine D1 receptors and working memory in schizophrenia. J Neurosci 22:3708–3719.

    CAS  PubMed  Google Scholar 

  • Adams B, Moghaddam B (1998) Corticolimbic dopamine neurotransmission is temporally dissociated from the cognitive and locomotor effects of phencyclidine. J Neurosci 18:5545–5554.

    CAS  PubMed  Google Scholar 

  • Akil M, Pierri JN, Whitehead RE, Edgar CL, Mohila C, Sampson AR, Lewis DA (1999) Lamina-specific alterations in the dopamine innervation of the prefrontal cortex in schizophrenic subjects. Am J Psychiatry 156:1580–1589.

    CAS  PubMed  Google Scholar 

  • Artola A, Singer W (1993) Long-term depression of excitatory synaptic transmission and its relationship to long-term potentiation. Trends Neurosci 16:480–487.

    Article  CAS  PubMed  Google Scholar 

  • Bannerman DM, Good MA, Butcher SP, Ramsay M, Morris RGM (1995) Distinct components of spatial learning revealed by prior training and NMDA receptor blockade. Nature 378:182–186.

    Article  CAS  PubMed  Google Scholar 

  • Bassareo V, Di Chiara G (1997) Differential influence of associative and nonassociative learning mechanisms on the responsiveness of prefrontal and accumbal dopamine transmission to food stimuli in rats fed ad libitum. J Neurosci 17:851–861.

    CAS  PubMed  Google Scholar 

  • Batuev AS, Kursina NP, Shutov AP (1990) Unit activity of the medial wall of the frontal cortex during delayed performance in rats. Behav Brain Res 41:95–102.

    Article  CAS  PubMed  Google Scholar 

  • Bienenstock EL, Cooper LN, Munro PW (1982) Theory for the development of neuron selectivity: orientation specificity and binocular interaction in visual cortex. J Neurosci 2:32–48.

    CAS  PubMed  Google Scholar 

  • Blond O, Crepel F, Otani S (2002) Long-term potentiation in rat prefrontal slices facilitated by phased application of dopamine. Eur J Pharmacl 438:115–116.

    CAS  Google Scholar 

  • Clark KA, Collingridge GL (1996) Evidence that heterosynaptic depolarization underlies associativity of long-term potentiation in rat hippocampus. J Physiol 490:455–462.

    CAS  PubMed  Google Scholar 

  • Cormier RL, Grennwood AC, Connor JA (2001) Bidirectional synaptic plasticity correlated with the magnitude of dendritic calcium transients above a threshold. J Neurophysiol 85:399–406.

    CAS  PubMed  Google Scholar 

  • Dudek SM, Bear MF (1992) Homosynaptic long-term depression in area CA1 of hippocampus and effects of N-methyl-D-aspartate receptor blockade. Proc Natl Acad Sci USA 89:4363–4367.

    CAS  PubMed  Google Scholar 

  • Feenstra MGP, Vogel M., Botterblom MHA, Joosten RNJMA, de Bruin JPC (2001) Dopamine and noradrenaline efflux in the rat prefrontal cortex after classical aversive conditioning to an auditory cue. Eur J Neurosci 13:1051–1054.

    Article  CAS  PubMed  Google Scholar 

  • Floresco SB, Seamans JK, Phillips AG (1997) Selective roles for hippocampal, prefrontal cortical, and ventral striatal circuits in radial-arm maze tasks with or without a delay. J Neurosci 17:1880–1890.

    CAS  PubMed  Google Scholar 

  • Geijo-Barrientos E, Pastore C (1995) The effects of dopamine on the subthreshold electrophysiological responses of rat prefrontal cortex neurons in vitro. Eur J Neurosci 7:358–366.

    CAS  PubMed  Google Scholar 

  • Goldman-Rakic PS (1995) Cellular basis of working memory. Neuron 14:477–485.

    CAS  PubMed  Google Scholar 

  • Gorelova NA, Yang CR (2000) Dopamine D1/D5 receptor activation modulates a persistent sodium current in rat prefrontal cortical neurons in vitro. J Neurophysiol 84:75–87.

    CAS  PubMed  Google Scholar 

  • Gresch PJ, Sved AF, Zigmond MJ, Finlay JM (1994) Stress-induced sensitization of dopamine and norepinephrine efflux in medial prefrontal cortex of the rat. J Neurochem 63:575–583.

    CAS  PubMed  Google Scholar 

  • Gulledge AT, Jaffe DB (1998) Dopamine decreases the excitability of layer V pyramidal cells in the rat prefrontal cortex. J Neurosci 18:9139–9151.

    CAS  PubMed  Google Scholar 

  • Gurden H, Tassin JP, Jay TM (1999) Integrity of the mesocortical DA system is necessary for complete expression of in vivo hippocampal-prefrontal cortex long-term potentiation. Neuroscience 94:1019–1027.

    Article  CAS  PubMed  Google Scholar 

  • Gurden H, Takita M, Jay TM (2000) Essential role of D1 but not D2 receptors in the NMDA receptor-dependent long-term potentiation at hippocampal-prefrontal cortex synapses in vivo. J Neurosci 20:RC106 (1–5).

    CAS  PubMed  Google Scholar 

  • Hansel C, Artola A, Singer W (1996) Relation between dendritic Ca2+ levels and the polarity of synaptic long-term modifications in rat visual cortex neurons. Eur J Neurosci 9:2309–2322.

    Google Scholar 

  • Herry, C. & Garcia, R. (2002) Prefrontal cortex long-term potentiation, but not long-term depression, is associated with the maintenance of extinction of learned fear in mice. J Neurosci 22:577–583.

    CAS  PubMed  Google Scholar 

  • Herry C, Vouimba R-M, Garcia R (1999) Plasticity in the mediodorsal thalamo-prefrontal cortical transmission in behaving mice. J Neurophysiol 82:2827–2832.

    CAS  PubMed  Google Scholar 

  • Hirsch JC, Crepel F (1991) Blockade of NMDA receptors unmasks a long-term depression in synaptic efficacy in rat prefrontal neurons in vitro. Exp. Brain Res 85:621–624.

    Article  CAS  PubMed  Google Scholar 

  • Jay TM, Witter MP (1991) Distribution of hippocampal CA1 and subicular efferents in the prefrontal cortex of the rat studied by means of anterograde transport of Phaseolus vulgaris-leucoagglutinin. J Comp Neurol 313:574–586.

    Article  CAS  PubMed  Google Scholar 

  • Jung MW, Qin Y, McNaughton BL, Barnes CA (1998) Firing characteristics of deep layer neurons in prefrontal cortex in rats performing spatial working memory tasks. Cereb Cortex 8:437–450.

    Article  CAS  PubMed  Google Scholar 

  • Kirkwood A, Rioult MG, Bear MF (1996) Experience-dependent modification of synaptic plasticity in visual cortex. Nature 381:526–528.

    Article  CAS  PubMed  Google Scholar 

  • Kiyatkin EA, Rebec GV (1998) Heterogeneity of ventral tegmental area neurons: single-unit recording and iontophoresis in awake, unrestrained rats. Neuroscience 85:1285–1309.

    Article  CAS  PubMed  Google Scholar 

  • Kosobud AEK, Harris GC, Chapin JK (1994) Behavioral associations of neuronal activity in the ventral tegmental area of the rat. J Neurosci 14:7117–7129.

    CAS  PubMed  Google Scholar 

  • Larson J, Wong D, Lynch G (1986) Patterned stimulation at the theta frequency is optimal for the induction of hippocampal long-term potentiation. Brain Res 368:347–350.

    Article  CAS  PubMed  Google Scholar 

  • Law-Tho D, Desce JM, Crepel F (1995) Dopamine favours the emergence of long-term depression versus long-term potentiation in slices of rat prefrontal cortex. Neurosci Lett 188:125–128.

    Article  CAS  PubMed  Google Scholar 

  • Levy WB, Steward O (1979) Synapses as associative memory elements in the hippocampal formation. Brain Res 175:233–245.

    Article  CAS  PubMed  Google Scholar 

  • Levy WB, Steward O (1983) Temporal contiguity requirements for long-term associative potentiation/depression in the hippocampus. Neuroscience 8:791–797.

    CAS  PubMed  Google Scholar 

  • Miller E.K. & Cohen, J.D. (2001) An integrative theory of prefrontal cortex function. Annu Rev Neurosci 24:167–202.

    Article  CAS  PubMed  Google Scholar 

  • Mizoguchi K, Yuzurihara M, Ishige A, Sasaki H, Chui D-H, Tabira T (2000) Chronic stress induces impairment of spatial working memory because of prefrontal dopaminergic dysfunction. J Neurosci 15:1568–1574.

    Google Scholar 

  • Moghaddam B, Adams BW (1998) Reversal of phencyclidine effects by a group II metabotropic glutamate receptor agonist in rats. Science 281:1349–1352.

    Article  CAS  PubMed  Google Scholar 

  • Moghaddam B, Adams BW, Verma A, Daly D (1997) Activation of glutamatergic neurotransmission by ketamine: a novel step in the pathway from NMDA receptor blockade to dopaminergic and cognitive disruptions associated with the prefrontal cortex. J Neurosci 17:2921–2927.

    CAS  PubMed  Google Scholar 

  • Morris SH, Knevett S, Lerner EG, Bindman LJ (1999) Group I mGluR agonist DHPG facilitates the induction of LTP in rat prelimbic cortex in vitro. J Neurophysiol 82:1927–1933.

    CAS  PubMed  Google Scholar 

  • Mulder AB, Nordquist R, Örgüt O, Pennartz CMA (2000) Plasticity of neuronal firing in deep layers of the medial prefrontal cortex in rats engaged in operant conditioning. In: Progress in Brain Research, vol 126 (Uylings HBM, Van Eden CG, De Bruin JPC, Feestra MGP, and Pennartz CMA, eds), pp 287–301, Elsevier, Amsterdam.

    Google Scholar 

  • O’Keefe J, Nadel L (1978) The Hippocampus as a Cognitive Map, Clarendon Press, Oxford.

    Google Scholar 

  • Otani S. (2002) Memory trace in prefrontal cortex: theory for the cognitive switch. Biol Rev 77:563–577.

    Article  PubMed  Google Scholar 

  • Otani S, Connor JA (1998) Requirement of rapid Ca2+ entry and synaptic activation of metabotropic glutamate receptors for the induction of long-term depression in adult rat hippocampus. J Physiol (Lond) 511:761–770.

    Article  CAS  Google Scholar 

  • Otani S, Blond O, Desce J-M, Crépel F (1998) Dopamine facilitates long-term depression of glutamatergic transmission in rat prefrontal cortex. Neuroscience 85:669–676.

    Article  CAS  PubMed  Google Scholar 

  • Otani S, Auclair N, Desce J-M, Roisin M-P, Crépel F (1999) Dopamine receptors and groups I and II mGluRs cooperate for long-term depression induction in rat prefrontal cortex through converging postsynaptic activation of MAP kinases. J Neurosci 19:9788–9802.

    CAS  PubMed  Google Scholar 

  • Otani S, Daniel H, Takita M, Crepel F (2002). Long-term depression induced by postsynaptic group II mGluRs linked to phospholipase C and intracellular calcium rises in rat prefrontal cortex. J Neurosci 22:3434–3444.

    CAS  PubMed  Google Scholar 

  • Otani S, Daniel H, Roisin M-P, Crepel F (2003) Dopaminergic modulation of long-term synaptic plasticity in rat prefrontal neurons. Cereb Cortex (in press).

    Google Scholar 

  • Perez-Jaranay JM, Vives F (1991) Electrophysiological study of the response of medial prefrontal cortex neurons to stimulation of the basolateral nucleus of the amygdala in the rat. Brain Res 8:97–101.

    Google Scholar 

  • Pratt WE, Mizumori SJY (2001) Neurons in rat medial prefrontal cortex show anticipatory rate changes to predictable differential rewards in a spatial memory task. Behav Brain Res 123:165–183.

    Article  CAS  PubMed  Google Scholar 

  • Reynolds JJ, Hyland BL, Wickens JR (2001) A cellular mechanisms of reward-related learning. Nature 413:67–70.

    Article  CAS  PubMed  Google Scholar 

  • Robbins TW and Everitt BJ (2002) Dopamine-its role in behaviour and cognition in experimental animals and humans. In: Handbook of Experimental Pharmacology, vol 154/II, Chap 19 (Di Chiara G, ed), pp 173–211.

    Google Scholar 

  • Rogan MT, Stäubli UV, LeDoux JE (1997) Fear conditioning induces associative long-term potentiation in the amygdala. Nature 390:604–607.

    Article  CAS  PubMed  Google Scholar 

  • Rossi S, Cappa SF, Babiloni C, Pasqualetti P, Miniussi C, Carducci F, Babiloni F, Rossini PM (2001) Prefrontal cortex in long-term memory: an “interference” approach using magnetic stimulation. Nature Neurosci 4:948–952.

    Article  CAS  PubMed  Google Scholar 

  • Schultz W (2002) Getting formal with dopamine and reward. Neuron 36:241–263.

    Article  CAS  PubMed  Google Scholar 

  • Seamans JK, Durstewitz D, Christie B.R, Stevens CF, Sejonowski TJ (2001) Dopamine D1/D5 receptor modulation of excitatory synaptic inputs to layer V prefrontal cortex neurons. Proc Natl Acad Sci USA 98:301–306.

    Article  CAS  PubMed  Google Scholar 

  • Suzuki Y, Jodo E, Takeuchi S, Niwa S, Kayama Y (2002) Acute administration of phencyclidine induces tonic activation of medial prefrontal cortex neurons in freely moving rats. Neuroscience 114:769–779.

    Article  CAS  PubMed  Google Scholar 

  • Takahata R., Moghaddam B. (2000) target-specific glutamate regulation of dopamine neurons in the ventral tegmental area. J Neurochem 75:1775–1778.

    Article  CAS  PubMed  Google Scholar 

  • Takita M, Izaki Y, Jay TM, Kaneko H, Suzuki SS (1999) Induction of stable long-term depression in vivo in the hippocampal-prefrontal cortex pathway; Eur J Neurosci 11:4145–4148.

    Article  CAS  PubMed  Google Scholar 

  • Ungless MA, Whistler JL, Malenka RC, Bonci A (2001) Single cocaine exposure in vivo induces long-term potentiation in dopamine neurons. Nature 411:583–587.

    Article  CAS  PubMed  Google Scholar 

  • Vickery RM, Morris SH, Bindman LJ (1997) Metabotropic glutamate receptors are involved in long-term potentiation in isolated slices of rat medial frontal cortex. J Neurophysiol 78:3039–3046.

    CAS  PubMed  Google Scholar 

  • Wang J, O’Donnell P (2001) D1 dopamine receptors potentiate NMDA-mediated excitability increase in layer V prefrontal cortical pyramidal neurons. Cereb Cortex 11:452–462.

    Article  CAS  PubMed  Google Scholar 

  • Watanabe M (1996) Reward expectancy in primate prefrontal neurons. Nature 382:629–632.

    Article  CAS  PubMed  Google Scholar 

  • Yang CR, Seamans JK (1996) Dopamine D1 receptor actions in layer v–vi rat prefrontal cortex neurons in vitro: Modulation of dendritic-somatic signal integration. J Neurosci 16: 1922–1935.

    CAS  PubMed  Google Scholar 

  • Yang CR, Seamans JK, Gorelova N (1999) Developing a neuronal model for the pathophysiology of schizophrenia based on the nature of electrophysiological actions of dopamine in the prefrontal cortex. Neuropsychopharmacol 21:161–194.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Kluwer Academic Publishers

About this chapter

Cite this chapter

Otani, S., Kolomiets, B. (2004). Induction Properties of Synaptic Plasticity in Rat Prefrontal Neurons. In: Otani, S. (eds) Prefrontal Cortex: From Synaptic Plasticity to Cognition. Springer, Boston, MA. https://doi.org/10.1007/1-4020-7949-4_4

Download citation

  • DOI: https://doi.org/10.1007/1-4020-7949-4_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4020-7766-1

  • Online ISBN: 978-1-4020-7949-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics