Skip to main content

Abnormalities of Nuclear Receptors in Thyroid Cancer

  • Chapter
Molecular Basis of Thyroid Cancer

Part of the book series: Cancer Treatment and Research ((CTAR,volume 122))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cheng, S.-y. Multiple mechanisms for regulation of the transcriptional activity of thyroid hormone receptors. Rev Endocr Metab Disord 1: 9–18, 2000.

    Article  CAS  PubMed  Google Scholar 

  2. Yen, P. M. Physiological and molecular basis of thyroid hormone action. Physiol Rev 81: 1097–1142, 2001.

    CAS  PubMed  Google Scholar 

  3. McKenna, N. J., Lanz, R. B., and O’Malley, B. W. Nuclear receptor coregulators: cellular and molecular biology. Endocrinol Rev, 20: 321–344, 1999.

    Article  CAS  Google Scholar 

  4. Hermanson, O., Glass, C. K., and Rosenfeld, M. G. Nuclear receptor coregulators: multiple modes of modification. Trends Endocrinol Metab, 13: 55–60, 2002.

    CAS  PubMed  Google Scholar 

  5. Levi, F, Franceschi, S., Gulie, C., Negri, E., and La Vecchia, C. Female thyroid cancer: the role of reproductive and hormonal factors in Switzerland. Oncology, 50: 309–315, 1993.

    CAS  PubMed  Google Scholar 

  6. Jemal, A., Murray, T., Samuels, A., Ghafoor, A., Ward, E., and Thun, M.J. Cancer statistics. CA Cancer J Clin, 53: 5–26, 2003.

    PubMed  Google Scholar 

  7. Miki, H., Oshimo, K., Inoue, H., Morimoto, T., and Monden, Y. Sex hormone receptors in human thyroid tissues. Cancer, 66: 1759–1762, 1990.

    CAS  PubMed  Google Scholar 

  8. Mizukami, Y, Michigishi, T., Nonomura, A., Hashimoto, T., Noguchi, M., and Matsubara, F. Estrogen and estrogen receptors in thyroid carcinomas. J Surg Oncol, 47: 165–169, 1991.

    CAS  PubMed  Google Scholar 

  9. Yane, K., Kitahori, Y, Konishi, N., Okaichi, K., Ohnishi, T., Miyahara, H., Matsunaga, T., Lin, J. C., and Hiasa, Y. Expression of the estrogen receptor in human thyroid neoplasms. Cancer Lett, 84: 59–66, 1994.

    Article  CAS  PubMed  Google Scholar 

  10. Lewy-Trenda, I. Estrogen and progesterone receptors in neoplastic and non-neoplastic thyroid lesions. Pol J Pathol, 53: 67–72, 2002.

    CAS  PubMed  Google Scholar 

  11. Yang, K., Pearson, C. E., and Samaan, N. A. Estrogen receptor and hormone responsiveness of medullary thyroid carcinoma cells in continuous culture. Cancer Res 48: 2760–2763, 1988.

    CAS  PubMed  Google Scholar 

  12. Banu, K.S., Govindarajulu, P., and Aruldhas, M. M. Testosterone and estradiol have specific differential modulatory effect on the proliferation of human thyroid papillary and follicular carcinoma cell lines independent of TSH action. Endocr Pathol, 12: 315–327, 2001.

    Article  CAS  PubMed  Google Scholar 

  13. Manole, D., Schildknecht, B., Gosnell, B., Adams, E., and Derwahl, M. Estrogen promotes growth of human thyroid tumor cells by different molecular mechanisms. J Clin Endocrinol Metab, 86: 1072–1077, 2001.

    Article  CAS  PubMed  Google Scholar 

  14. Bur, M., Shiraki, W., and Masood, S. Estrogen and progesterone receptor detection in neoplastic and non-neoplastic thyroid tissues. Mod Pathol, 6: 469–472, 1993.

    CAS  PubMed  Google Scholar 

  15. van Hoeven, K. H., Menendez-Botet, C. J., Strong, E. W, and Huvos, A.G. Estrogen and progesterone receptor content in human thyroid disease. Am J Clin Pathol, 99: 175–181, 1993.

    PubMed  Google Scholar 

  16. Colomer, A., Martinez-Mas, J. V., Matias-Guiu, X., Llorens, A., Cabezas, R., Prat, J., and Garcia-Ameijeiras, A. Sex-steroid hormone receptors in human medullary thyroid carcinoma. Mod Pathol, 9: 68–72, 1996.

    CAS  PubMed  Google Scholar 

  17. Bonacci, R., Pinchera, A., Fierabracci, P., Gigliotti, A., Grasso, L., and Giani, C. Relevance of estrogen and progesterone receptors enzyme immunoassay in malignant, benign and surrounding normal thyroid tissue. J Endocrinol Invest, 19: 159–164, 1996.

    CAS  PubMed  Google Scholar 

  18. Metaye, T., Millet, C., Kraimps, J. L., Aubouin, B., Barbier, J., and Begon, F. Estrogen receptors and cathepsin D in human thyroid tissue. Cancer, 72: 1991–1996, 1993.

    CAS  PubMed  Google Scholar 

  19. Jaklic, B. R., Rushin, J., and Ghosh, B. C. Estrogen and progesterone receptors in thyroid lesions. Ann Surg Oncol, 2: 429–434, 1995.

    CAS  PubMed  Google Scholar 

  20. Verma, A. K. Retinoids in chemoprevention of cancer. J Biol Regul Homeost Agents, 17: 92–97, 2003.

    CAS  PubMed  Google Scholar 

  21. Ralhan, R., and Kaur, J. Retinoids as chemopreventive agents. J Biol Regul Homeost Agents, 17: 66–91, 2003.

    CAS  PubMed  Google Scholar 

  22. del Senno, L., Rossi, R., Gandini, D., Piva, R., Franceschetti, P., and degli Uberti, E. C. Retinoic acid-induced decrease of DNA synthesis and peroxidase mRNA levels in human thyroid cells expressing retinoic acid receptor alpha mRNA. Life Sci, 53: 1039–1048, 1993.

    PubMed  Google Scholar 

  23. del Senno, L., Rossi, R., Franceschetti, P., delgi Uberti, E. C. Expression of all-trans-retinoic acid receptor RNA in human thyroid cells. Biochem Mol Biol Int, 33: 1107–1115, 1994.

    PubMed  Google Scholar 

  24. Rochaix, P., Monteil-Onteniente, S., Rochette-Egly, C., Caratero, C., Voigt, J. J., and Jozan, S. Reduced expression of retinoic acid receptor beta protein (RAR beta) in human papillary thyroid carcinoma: immunohistochemical and western blot study. Histopathology, 33: 337–343, 1998.

    Article  CAS  PubMed  Google Scholar 

  25. Schmutzler, C., Brtko, J., Winzer, R., Jakobs, T. C., Meissner-Weigl, J., Simon, D., Goretzki, P. E., and Kohrle, J. Functional retinoid and thyroid hormone receptors in human thyroid-carcinoma cell lines and tissues. Int J Cancer, 76: 368–376, 1998.

    Article  CAS  PubMed  Google Scholar 

  26. Simon, D., Korber, C., Krausch, M., Segering, J., Groth, P., Gorges, R., Grunwald, F., Muller-Gartner, H. W., Schmutzler, C., Kohrle, J., Roher, H. D., and Reiners, C. Clinical impact of retinoids in redifferentiation therapy of advanced thyroid cancer: final results of a pilot study. Eur J Nucl Med Mol Imaging, 29: 775–782, 2002.

    CAS  PubMed  Google Scholar 

  27. Sap, J., Munoz, A., Damm, K., Goldberg, Y., Ghysdael, J., Leutz, A., Beug, H., and Vennstrom, B. The c-erb-A protein is a high-affinity receptor for thyroid hormone. Nature, 324: 635–640, 1986.

    Article  CAS  PubMed  Google Scholar 

  28. Thormeyer, D. and Baniahmad, A. The v-erbA oncogene. Int J Mol Med, 4: 351–358, 1999.

    CAS  PubMed  Google Scholar 

  29. Barlow, C., Meister, B., Lardelli, M., Lendahl, U., and Vennstrom, B. Thyroid abnormalities and hepatocellular carcinoma in mice transgenic for v-erbA. EMBO J, 13: 4241–4250, 1994.

    CAS  PubMed  Google Scholar 

  30. Lin, K. H., Shieh, H. Y., Chen, S. L., and Hsu, H. C. Expression of mutant thyroid hormone nuclear receptors in human hepatocellular carcinoma cells. Mol Carcinog, 26: 53–61, 1999.

    Article  CAS  PubMed  Google Scholar 

  31. Puzianowska-Kuznicka, M., Nauman, A., Madej, A., Tanski, Z., Cheng, S., Nauman, J. Expression of thyroid hormone receptors is disturbed in human renal clear cell carcinoma. Cancer Lett, 155: 145–152, 2000.

    Article  CAS  PubMed  Google Scholar 

  32. Kamiya, Y., Puzianowska-Kuznicka, M., McPhie, P., Nauman, J., Cheng, S.Y., and Nauman, A. Expression of mutant thyroid hormone nuclear receptors is associated with human renal clear cell carcinoma. Carcinogenesis, 23: 25–33, 2002.

    Article  CAS  PubMed  Google Scholar 

  33. Lin, K. H., Zhu, X. G., Shieh, H. Y, Hsu, H. C., Chen, S. T, McPhie, P., and Cheng, S. Y. Identification of naturally occurring dominant negative mutants of thyroid hormone alpha 1 and beta 1 receptors in a human hepatocellular carcinoma cell line. Endocrinology 137: 4073–4081, 1996.

    Article  CAS  PubMed  Google Scholar 

  34. Wallin, G., Bronnegard, M., Grimelius, L., McGuire, J., and Torring, O. Expression of the thyroid hormone receptor, the oncogenes c-myc and H-ras, and the 90 kD heat shock protein in normal, hyperplastic, and neoplastic human thyroid tissue. Thyroid, 2: 307–313, 1992.

    CAS  PubMed  Google Scholar 

  35. Bronnegard, M., Torring, O., Boos, J., Sylven, C., Marcus, C., and Wallin, G., 1994. Expression of thyrotropin receptor and thyroid hormone receptor messenger ribonucleic acid in normal, hyperplastic, and neoplastic human thyroid tissue. J. Clin Endocrinol Metab, 79: 384–389, 1994.

    Article  CAS  PubMed  Google Scholar 

  36. Puzianowska-Kuznick, M., Krystyniak, A., Madej, A., Cheng, S.-y., and Nauman, J. Contribution of functionally impaired thyroid hormone receptor mutants to the tumorigenesis of thyroid papillary cancer. J Clin Endocrinol Metab, 87: 1120–1128, 2002.

    Google Scholar 

  37. Takano, T., Miyauchi, A., Yoshida, H., Nakata, Y., Kuma, K., Amino, N. Expression of TRbeta 1 mRNAs with functionally impaired mutations is rare in thyroid papillary carcinoma. J Clin Endocrinol Metab 88: 3447–3449, 2003.

    Article  CAS  PubMed  Google Scholar 

  38. Namba, H., Yamashita, S., Pei, H. C., Ishikawa, N., Villadolid, M. C., Tominaga, T, Kimura, H., Tsuruta, M., Yokoyama, N., and Izumi, M. Lack of PTC gene (ret proto-oncogene rearrangement) in human thyroid tumors. Endocrinol Jpn, 38: 627–632, 1991.

    CAS  PubMed  Google Scholar 

  39. Zou, M., Shi, Y., and Farid, N. R. Low rate of ret proto-oncogene activation (PTC/retTPC) in papillary thyroid carcinomas from Saudi Arabia. Cancer, 73: 176–180, 1994.

    CAS  PubMed  Google Scholar 

  40. Cinti, R., Yin, L., Ilc, K., Berger, N., Basolo, F., Cuccato, S., Giannini, R., Torre, G., Miccoli, P., Amati, P., Romeo, G., and Corvi, R. RET rearrangements in papillary thyroid carcinomas and adenomas detected by interphase FISH. Cytogenet Cell Genet, 88: 56–61, 2000.

    Article  CAS  PubMed  Google Scholar 

  41. Chua, E. L., Wu, W. M., Tran, K. T, McCarthy, S. W., Lauer, C. S., Dubourdieu, D., Packham, N., O’Brien, C. J., Turtle, J. R., and Dong, Q. Prevalence and distribution of ret/ptc 1, 2, and 3 in papillary thyroid carcinoma in New Caledonia and Australia, J Clin Endocrinol Metab, 85: 2733–2739, 2000.

    Article  CAS  PubMed  Google Scholar 

  42. Bednarczuk, T., Hiromatsu, Y., Fukutani, T., Jazdzewski, K., Miskiewicz, P., Osikowska, M., Nauman, J. Association of cytotoxic T-lymphocyte-associated antigen-4 (CTLA-4) gene polymorphism and non-genetic factors with Graves’ ophthalmopathy in European and Japanese populations. Eur J Endocrinol, 148: 13–18, 2003.

    Article  CAS  PubMed  Google Scholar 

  43. Kaneshige, M., Kaneshige, K., Zhu, X. G., Dace, A., Garrett, L., Carter, T. A., Kazlauskaite, R., Pankratz, D. G., Wynshaw-Boris, A., Refetoff, S., Weintraub, B., Willingham, M. C., Barlow, C., and Cheng, S.-y. Mice with a targeted mutation in the thyroid hormone β receptor gene exhibit impaired growth and resistance to thyroid hormone. Proc Natl Acad Sci USA, 97: 13209–13214, 2000.

    Article  CAS  PubMed  Google Scholar 

  44. Yen, P. M. Molecular basis of resistance to thyroid hormone. Trends Endocrinol Metab, 14: 327–333, 2003.

    CAS  PubMed  Google Scholar 

  45. Weiss, R. E. and Refetoff, S. Resistance to thyroid hormone. Rev Endocrinol Metab Disord, 1: 97–108, 2000.

    CAS  Google Scholar 

  46. Meier, C. A., Dickstein, B. M., Ashizawa, K., McClaskey, J. H., Muchmore, P., Ransom, S. C., Merke, J. B., Hao, E. U., Usala, S. J., Bercu, B. B., Cheng, S.-y., and Weintraub, B. D. Variable transcriptional activity and ligand binding of mutant β1 3,3’,5-triiodo-L-thyronine receptors from four families with generalized resistance to thyroid hormone. Mol Endocrinol, 6: 248–258, 1992.

    Article  CAS  PubMed  Google Scholar 

  47. Suzuki, H., Willingham, M. C., and Cheng, S. Y. Mice with a mutation in the thyroid receptor beta gene spontaneously develop thyroid carcinoma: a mouse model of thyroid carcinogenesis. Thyroid, 12: 963–969, 2002.

    Article  CAS  PubMed  Google Scholar 

  48. Ying, H., Suzuki, H., Furumoto, H., Walker, R., Meltzer, P., Billingham, M. C., and Cheng, S. Y. Alterations in genomic profiles during tumor progression in a mouse model of follicular thyroid carcinoma. Carcinogenesis, 24: 1467–1479, 2003.

    Article  CAS  PubMed  Google Scholar 

  49. Khoo, M. L., Beasley, N. J., Ezzat, S., Freeman, J. L., Asa, S. L. Overexpression of cyclin D1 and underexpression of p27 predict lymph node metastases in papillary thyroid carcinoma. J Clin Endocrinol Metab, 87: 1814–1818, 2002.

    CAS  PubMed  Google Scholar 

  50. Bieche, I., Franc, B., Vidaud, D., Vidaud, M., and Lidereau, R. Analyses of MYC, ERBB2, and CCND1 genes in benign and malignant thyroid follicular cell tumors by real-time polymerase chain reaction. Thyroid, 11: 147–152, 2001.

    Article  CAS  PubMed  Google Scholar 

  51. Heaney, A. P., Nelson, V., Fernando, M., and Horwitz, G., 2001. Transforming events in thyroid tumorigenesis and their association with follicular lesions. J Clin Endocrinol Metab, 86: 5025–5032, 2001.

    Article  CAS  PubMed  Google Scholar 

  52. Ishigaki, K., Namba, H., Nakashima, M., Nakayama, T., Mitsutake, N., Hayashi, T., Maeda, S., Ichinose, M., Kanematsu, T., Yamashita, S. Aberrant localization of beta-catenin correlates with overexpression of its target gene in human papillary thyroid cancer. J Clin Endocrinol Metab, 87: 433–440, 2002.

    Article  Google Scholar 

  53. Holting, T., Goretzki, P. E., and Duh, Q. Y. Follicular thyroid cancer cells: a model of metastatic tumor in vitro. Oncol Rep, 8: 3–8, 2001.

    Google Scholar 

  54. Yen, P. M. and Cheng, S-y. Germline and somatic thyroid hormone receptor mutations in man. J Endocrinolo Invest, 26: (pages not known), in press, 2003.

    Google Scholar 

  55. Lin, K. H., Zhu, X. G., Hsu, H. C., Chen, S. L., Shieh, H. Y., Chen, S. T., McPhie, P., and Cheng, S. Y. Dominant negative activity of mutant thyroid hormone alpha 1 receptors from patients with hepatocellular carcinoma. Endocrinology, 138: 5308–5315, 1997.

    CAS  PubMed  Google Scholar 

  56. Kimura, T., Van Keymeulen, A., Golstein, J., Fusco, A., Dumont, J. E., and Roger, P. P. Regulation of thyroid cell proliferation by TSH and other factors: a critical evaluation of in vitro models. Endocr Rev, 22: 631–656, 2001.

    Article  CAS  PubMed  Google Scholar 

  57. Rivas, M. and Santisteban, P. TSH-activated signaling pathways in thyroid carcinogenesis. Molecular Cellular Endo Review (in press), 2003.

    Google Scholar 

  58. Fagin, J.A. Branded from the start-distinct oncogenic initiating events may determine tumor fate in the thyroid (minireview). Mol Endocrinol, 16: 903–911, 2002.

    Article  CAS  PubMed  Google Scholar 

  59. Desvergne, B. and Wahli, W. Peroxisome proliferator-activated receptors: nuclear control of metabolism. Endocr Rev, 20: 649–688, 1999.

    Article  CAS  PubMed  Google Scholar 

  60. Fajas, L., Webril, M. B., Auwerx, J. Peroxisome proliferator-activated receptor-gamma: from adipogenesis to carcinogenesis. J Mol Endocrinol, 27: 1–9, 2001.

    Article  CAS  PubMed  Google Scholar 

  61. Fajas, L., Auboeuf, D., Raspe, E., Schoonjans, K., Lefebvre, A. M., Saladin, R., Najib, J., Laville, M., Fruchart. J. C., Deeb, S., Vidal-Puig, A., Flier, J., Briggs, M. R., Staels, B., Vidal, H., and Auwerx, J. The organization, promoter analysis, and expression of the human PPARgamma gene. J Biol Chem, 272: 18779–18789, 1997.

    Article  CAS  PubMed  Google Scholar 

  62. Altiok, S., Xu, M., and Spiegelman, B. M. PPARgamma induces cell cycle withdrawal: inhibition of E2F/DP DNA-binding activity via down-regulation of PP2A. Genes Dev, 11: 1987–1998, 1997.

    CAS  PubMed  Google Scholar 

  63. Tontonoz, P., Singer, S., Forman, B. M., Sarraf, P., Fletcher, J. A., Fletcher, C. D., Brun, R. P., Mueller, E., Altiok, S., Oppenheim, H., Evans, R. M., and Spiegelman, B. M. Terminal differentiation of human liposarcoma cells induced by ligands for peroxisome proliferator-activated receptor gamma and the retinoid X receptor. Proc Natl Acad Sci USA, 94: 237–241, 1997.

    Article  CAS  PubMed  Google Scholar 

  64. Elstner, E., Muller, C., Koshizuka, K., Williamson, E. A., Park, D., Asou, H., Shintaku, P., Said, J. W., Heber, D., and Koeffler, H. P. Ligands for peroxisome proliferator-activated receptor and retinoic acid receptor inhibit growth and induce apoptosis of human breast cancer cells in vitro and in BNX mice. Proc Natl Acad Sci USA, 95: 8806–8811, 1998.

    Article  CAS  PubMed  Google Scholar 

  65. Mueller, E., Sarraf, P., Tontonoz, P., Evans, R. M., Martin, K. J., Zhang, M., Fletcher, C., Singer, S., Spiegelman, B. M. Terminal differentiation of human breast cancer through PPAR. Mol Cell, 1: 465–470, 1998.

    Article  CAS  PubMed  Google Scholar 

  66. Brockman, J. A., Gupta, R. A., and DuBois, R. N. Activation of PPAR leads to inhibition of anchorage-independent growth of human colorectal cancer cells. Gastroenterology, 115: 1049–1055, 1998.

    Article  CAS  PubMed  Google Scholar 

  67. Kuboto, T., Koshizuka, K., Williamson, I. A., Asou, H., Said, J. W., Holden, S., Miyoshi, I., Koeffler, H. P. Ligand for peroxisome proliferator activated receptor (troglitazone) has potent anti-tumor effects against human prostate cancer both in vitro and in vivo. Cancer Res, 58: 3344–3352, 1998.

    Google Scholar 

  68. Sarraf, P., Mueller, E., Jones, D., King, F.J., De Angelo, D.J., Partridge, J. B., Holden, S. A., Chen, L. B., Singer, S., Fletcher, C., and Spiegelman, B. M. Differentiation and reversal of malignant changes in colon cancer through PPAR gamma. Nat Med, 4: 1046–1052, 1998.

    Article  CAS  PubMed  Google Scholar 

  69. Ohta, K., Endo, T., Haraguchi, K., Hershman, J. M., Onaya, T. Ligands for peroxisome proliferator-activated receptor gamma inhibit growth and induce apoptosis of human papillary thyroid carcinoma cells. J Clin Endocrinol Metab 86: 2170–2177, 2001.

    Article  CAS  PubMed  Google Scholar 

  70. Martelli, M. L., Iuliano, R., Le Pera, I., Sama’, I., Monaco, C., Cammarota, S., Kroll, T., Chiariotti, L., Santoro, M., Fusco, A. Inhibitory effects of peroxisome poliferator-activated receptor gamma on thyroid carcinoma cell growth. J Clin Endocrinol Metab, 87: 4728–4735, 2002.

    Article  CAS  PubMed  Google Scholar 

  71. Ying, H., Suzuki, H., Zhao, L., Willingham, M. C., Meltzer, P., Cheng, S. Y. Mutant thyroid hormone receptor beta represses the expression and transcriptional activity of peroxisome proliferator-activated receptor gamma during thyroid carcinogenesis. Cancer Res, 63: 5274–5280, 2003.

    CAS  PubMed  Google Scholar 

  72. Schoonjans, K., Peinado-Onsurbe, J., Lefebvre, A. M., Heyman, R. A., Briggs, M., Deeb, S., Staels, B., and Auwerx, J. PPARalpha and PPARgamma activators direct a distinct tissue-specific transcriptional response via a PPRE in the lipoprotein lipase gene. EMBO J., 15: 5336–5348, 1996.

    CAS  PubMed  Google Scholar 

  73. Kroll, T. G., Sarraf, P., Pecciarini, L., Chen, C. J., Mueller, E., Spiegelman, B. M., and Fletcher, J. A. PAX8-PPARgamma1 fusion oncogene in human thyroid carcinoma. Science, 289: 1357–1360, 2000.

    Article  CAS  PubMed  Google Scholar 

  74. Nikiforova, M. N., Biddinger, P. W., Caudill, C. M., Kroll, T. G., and Nikiforov, Y. E. PAX8-PPARgamma rearrangement in thyroid tumors: RT-PCR and immunohistochemical analyses. Am J Surg Pathol, 26: 1016–1023, 2002.

    Article  PubMed  Google Scholar 

  75. Marques, A. R., Espadinha, C., Catarino, A. L., Moniz, S., Pereira, T., Sobrinho, L. G., Leite, V. Expression of PAX8-PPAR gamma 1 rearrangements in both follicular thyroid carcinomas and adenomas. J Clin Endocrinol Metab, 87: 3947–3952, 2002.

    Article  CAS  PubMed  Google Scholar 

  76. French, C. A., Alexander, E. K., Cibas, E. S., Nose, V., Laguette, J., Faquin, W., Garber, J., Moore, F. Jr., Fletcher, J. A., Larsen, P. R., Kroll, T. G. Genetic and biological subgroups of low-stage follicular thyroid cancers Am J Pathol, 162: 1053–1060, 2003.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science + Business Media, Inc.

About this chapter

Cite this chapter

Cheng, SY. (2005). Abnormalities of Nuclear Receptors in Thyroid Cancer. In: Farid, N.R. (eds) Molecular Basis of Thyroid Cancer. Cancer Treatment and Research, vol 122. Springer, Boston, MA. https://doi.org/10.1007/1-4020-8107-3_9

Download citation

  • DOI: https://doi.org/10.1007/1-4020-8107-3_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4020-8106-4

  • Online ISBN: 978-1-4020-8107-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics