Skip to main content

Plasminogen Activation, Fibrinolysis, and Cell Proteolytic Activity in Antiphospholipid Syndrome

  • Chapter
Hughes Syndrome

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ellis V. Plasminogen activation at the cell surface. Curr Top Dev Biol 2003;54:263–312.

    PubMed  CAS  Google Scholar 

  2. Kim J, Hajjar KA. Annexin II: a plasminogen-plasminogen activator co-receptor. Front Biosci 2002;7:d341–348.

    PubMed  CAS  Google Scholar 

  3. Blasi F, Carmeliet P. uPAR: a versatile signalling orchestrator. Nat Rev Mol Cell Biol 2002;3:932–943.

    Article  PubMed  CAS  Google Scholar 

  4. Herren T, Swaisgood C, Plow EF. Regulation of plasminogen receptors. Front Biosci 2003;8:1–8.

    Google Scholar 

  5. Lijnen HR. Elements of the fibrinolytic system. Ann N Y Acad Sci 2001;936:226–236.

    Article  PubMed  CAS  Google Scholar 

  6. Fleury V, Lijnen HR, Angles-Cano E. Mechanism of the enhanced intrinsic activity of single-chain urokinase-type plasminogen activator during ongoing fibrinolysis. J Biol Chem 1993;268:18554–18559.

    PubMed  CAS  Google Scholar 

  7. Tsirka SE. Tissue plasminogen activator as a modulator of neuronal survival and function. Biochem Soc Trans 2002;30:222–225.

    Article  PubMed  CAS  Google Scholar 

  8. Meilhac O, Ho-Tin-Noe B, Houard X, Philippe M, Michel JB, Angles-Cano E. Pericellular plasmin induces smooth muscle cell anoikis. FASEB J 2003;17:1301–1303.

    PubMed  CAS  Google Scholar 

  9. Monard D. Cell-derived proteases and protease inhibitors as regulators of neurite outgrowth. Trends Neurosci 1988;11:541–544.

    Article  PubMed  CAS  Google Scholar 

  10. Choi BH, Suzuki M, Kim T, Wagner SL, Cunningham DD. Protease nexin-1. Localization in the human brain suggests a protective role against extravasated serine proteases. Am J Pathol 1990;137:741–747.

    PubMed  CAS  Google Scholar 

  11. Rossignol P, Ho-Tin-Noe B, Vranckx R, et al. Protease nexin-1 inhibits plasminogen activationinduced apoptosis of adherent cells. J Biol Chem 2004;279:10346–10356.

    Article  PubMed  CAS  Google Scholar 

  12. de la Pena-Diaz A, Izaguirre-Avila R, Angles-Cano E. Lipoprotein Lp(a) and atherothrombotic disease. Arch Med Res 2000;31:353–359.

    Article  PubMed  Google Scholar 

  13. Kolev K, Gombas J, Varadi B, et al. Immunoglobulin G from patients with antiphospholipid syndrome impairs the fibrin dissolution with plasmin. Thromb Haemost 2002;87:502–508.

    PubMed  CAS  Google Scholar 

  14. Tulinsky A. The structures of domains of blood proteins. Thromb Haemost 1991;66:16–31.

    PubMed  CAS  Google Scholar 

  15. McLean JW, Tomlinson JE, Kuang WJ, et al. cDNA sequence of human apolipoprotein(a) is homologous to plasminogen. Nature 1987;330:132–137.

    Article  PubMed  CAS  Google Scholar 

  16. Mosesson MW, Siebenlist KR, Meh DA. The structure and biological features of fibrinogen and fibrin. Ann N Y Acad Sci 2001;936:11–30.

    Article  PubMed  CAS  Google Scholar 

  17. Fleury V, Angles-Cano E. Characterization of the binding of plasminogen to fibrin surfaces: the role of carboxy-terminal lysines. Biochemistry 1991;30:7630–7638.

    Article  PubMed  CAS  Google Scholar 

  18. Suenson E, Lutzen O, Thorsen S. Initial plasmin-degradation of fibrin as the basis of a positive feedback mechanism in fibrinolysis. Eur J Biochem 1984;140:513–522.

    Article  PubMed  CAS  Google Scholar 

  19. Zwaal RF, Schroit AJ. Pathophysiologic implications of membrane phospholipid asymmetry in blood cells. Blood. 1997;89:1121–1132.

    PubMed  CAS  Google Scholar 

  20. Cesarman GM, Guevara CA, Hajjar KA. An endothelial cell receptor for plasminogen/tissue plasminogen activator (t-PA). II. Annexin II-mediated enhancement of t-PA-dependent plasminogen activation. J Biol Chem 1994;269:21198–21203.

    PubMed  CAS  Google Scholar 

  21. von Muhlen CA, Chan EK, Angles-Cano E, Mamula MJ, Garcia-De La Torre I, Fritzler MJ. Advances in autoantibodies in SLE. Lupus 1998;7:507–514.

    Article  Google Scholar 

  22. Fritzler MJ, Hart DA, Wilson D, et al. Antibodies to fibrin bound tissue type plasminogen activator in systemic sclerosis. J Rheumatol 1995;22:1688–1693.

    PubMed  CAS  Google Scholar 

  23. Salazar-Paramo M, Garcia de la Torre I, Fritzler MJ, Loyau S, Angles-Cano E. Antibodies to fibrinbound tissue-type plasminogen activator in systemic lupus erythematosus are associated with Raynaud’s phenomenon and thrombosis. Lupus 1996;5:275–278.

    PubMed  CAS  Google Scholar 

  24. Morse JH, Barst RJ, Fotino M, et al. Primary pulmonary hypertension, tissue plasminogen activator antibodies, and HLA-DQ7. Am J Respir Crit Care Med 1997;155:274–278.

    PubMed  CAS  Google Scholar 

  25. Cugno M, Cabibbe M, Galli M, et al. Antibodies to tissue-type plasminogen activator (tPA) in patients with antiphospholipid syndrome: evidence of interaction between the antibodies and the catalytic domain of tPA in 2 patients. Blood 2004;103:2121–2126.

    Article  PubMed  CAS  Google Scholar 

  26. Yang CD, Hwang KK, Yan, et al. Identification of anti-plasmin antibodies in the antiphospholipid syndrome that inhibit degradation of fibrin. J Immunol 2004;172:5765–5773.

    PubMed  CAS  Google Scholar 

  27. Angles-Cano E, Sultan Y, Clauvel JP. Predisposing factors to thrombosis in systemic lupus erythematosus: possible relation to endothelial cell damage. J Lab Clin Med 1979;94:312–323.

    PubMed  CAS  Google Scholar 

  28. Glas-Greenwalt P, Kant KS, Allen C, Pollak VE. Fibrinolysis in health and disease: severe abnormalities in systemic lupus erythematosus. J Lab Clin Med 1984;104:962–976.

    PubMed  CAS  Google Scholar 

  29. Awada H, Barlowatz-Meimon G, Dougados M, Maisonneuve P, Sultan Y, Amor B. Fibrinolysis abnormalities in systemic lupus erythematosus and their relation to vasculitis. J Lab Clin Med 1988;111:229–236.

    PubMed  CAS  Google Scholar 

  30. Francis RB Jr, Neely S. Effect of the lupus anticoagulant on endothelial fibrinolytic activity in vitro. Thromb Haemost 1989;61:314–317.

    PubMed  CAS  Google Scholar 

  31. Tsakiris DA, Marbet GA, Makris PE, Settas L, Duckert F. Impaired fibrinolysis as an essential contribution to thrombosis in patients with lupus anticoagulant. Thromb Haemost 1989;61:175–177.

    PubMed  CAS  Google Scholar 

  32. Violi F, Ferro D, Valesini G, et al. Tissue plasminogen activator inhibitor in patients with systemic lupus erythematosus and thrombosis. BMJ 1990;300:1099–1102.

    Article  PubMed  CAS  Google Scholar 

  33. Jurado M, Paramo JA, Gutierrez-Pimentel M, Rocha E. Fibrinolytic potential and antiphospholipid antibodies in systemic lupus erythematosus and other connective tissue disorders. Thromb Haemost 1992;68:516–520.

    PubMed  CAS  Google Scholar 

  34. Ferro D, Pittoni V, Quintarelli C, et al. Coexistence of anti-phospholipid antibodies and endothelial perturbation in systemic lupus erythematosus patients with ongoing prothrombotic state. Circulation 1997;95:1425–1432.

    PubMed  CAS  Google Scholar 

  35. Kohler HP, Grant PJ. Plasminogen-activator inhibitor type 1 and coronary artery disease. N Engl J Med 2000;342:1792–1801.

    Article  PubMed  CAS  Google Scholar 

  36. Cockwell P, Tse WY, Savage CO. Activation of endothelial cells in thrombosis and vasculitis. Scand J Rheumatol 1997;26:145–150.

    Article  PubMed  CAS  Google Scholar 

  37. Boyer-Neumann C, Brenot F, Wolf M, et al. Continuous infusion of prostacyclin decreases plasma levels of t-PA and PAI-1 in primary pulmonary hypertension. Thromb Haemost 1995;73:735–736.

    PubMed  CAS  Google Scholar 

  38. Asherson RA, Cervera R. Antiphospholipid antibodies and the lung. J Rheumatol 1995;22:62–66.

    PubMed  CAS  Google Scholar 

  39. Ames PR, Tommasino C, Iannaccone L, Brillante M, Cimino R, Brancaccio V. Coagulation activation and fibrinolytic imbalance in subjects with idiopathic antiphospholipid antibodies — a crucial role for acquired free protein S deficiency. Thromb Haemost 1996;76:190–194.

    PubMed  CAS  Google Scholar 

  40. Gris JC, Ripart-Neveu S, Maugard C, et al. Respective evaluation of the prevalence of haemostasis abnormalities in unexplained primary early recurrent miscarriages. The Nimes Obstetricians and Haematologists (NOHA) Study. Thromb Haemost 1997;77:1096–1103.

    PubMed  CAS  Google Scholar 

  41. Keeling DM, Campbell SJ, Mackie IJ, Machin SJ, Isenberg DA. The fibrinolytic response to venous occlusion and the natural anticoagulants in patients with antiphospholipid antibodies both with and without systemic lupus erythematosus. Br J Haematol 1991;77:354–359.

    PubMed  CAS  Google Scholar 

  42. Patrassi GM, Sartori MT, Ruffatti A, et al. Fibrinolytic pattern in recurrent spontaneous abortions: no relationship between hypofibrinolysis and anti-phospholipid antibodies. Am J Hematol 1994;47:266–272.

    PubMed  CAS  Google Scholar 

  43. Mackworth-Young CG, Andreotti F, Harmer I, et al. Endothelium-derived haemostatic factors and the antiphospholipid syndrome. Br J Rheumatol 1995;34:201–206.

    PubMed  CAS  Google Scholar 

  44. McCrae KR, DeMichele A, Samuels P, et al. Detection of endothelial cell-reactive immunoglobulin in patients with anti-phospholipid antibodies. Br J Haematol 1991;79:595–605.

    PubMed  CAS  Google Scholar 

  45. Hill MB, Phipps JL, Malia RG, Greaves M, Hughes P. Characterization and specificity of antiendothelial cell membrane antibodies and their relationship to thrombosis in primary antiphospholipid syndrome (APS). Clin Exp Immunol 1995;102:368–372.

    Article  PubMed  CAS  Google Scholar 

  46. Lanir N, Zilberman M, Yron I, Tennenbaum G, Shechter Y, Brenner B. Reactivity patterns of antiphospholipid antibodies and endothelial cells: effect of antiendothelial antibodies on cell migration. J Lab Clin Med 1998;131:548–556.

    Article  PubMed  CAS  Google Scholar 

  47. Simantov R, LaSala JM, Lo SK, et al. Activation of cultured vascular endothelial cells by antiphospholipid antibodies. J Clin Invest 1995;96:2211–2219.

    Article  PubMed  CAS  Google Scholar 

  48. Pierangeli SS, Colden-Stanfield M, Liu X, Barker JH, Anderson GL, Harris EN. Antiphospholipid antibodies from antiphospholipid syndrome patients activate endothelial cells in vitro and in vivo. Circulation 1999;99:1997–2002.

    PubMed  CAS  Google Scholar 

  49. Meroni PL, Raschi E, Testoni C, Borghi MO. Endothelial cell activation by antiphospholipid antibodies. Clin Immunol 2004;112:169–174.

    Article  PubMed  CAS  Google Scholar 

  50. Dignat-George F, Camoin-Jau L, Sabatier F, et al. Endothelial microparticles: a potential contribution to the thrombotic complications of the antiphospholipid syndrome. Thromb Haemost 2004;91:667–673.

    PubMed  CAS  Google Scholar 

  51. Sheng Y, Sali A, Herzog H, Lahnstein J, Krilis SA. Site-directed mutagenesis of recombinant human beta 2-glycoprotein I identifies a cluster of lysine residues that are critical for phospholipid binding and anti-cardiolipin antibody activity. J Immunol 1996;157:3744–3751.

    PubMed  CAS  Google Scholar 

  52. Bouma B de Groot PG van den Elsen et al. Adhesion mechanism of human beta2-glycoprotein I to phospholipids based on its crystal structure. EMBO J 1999;185166–5174.

    Article  PubMed  CAS  Google Scholar 

  53. Guerin J, Sheng Y, Reddel S, Iverson GM, Chapman MG, Krilis SA. Heparin inhibits the binding of beta 2-glycoprotein I to phospholipids and promotes the plasmin-mediated inactivation of this blood protein. Elucidation of the consequences of the two biological events in patients with the antiphospholipid syndrome. J Biol Chem 2002;277:2644–2649.

    Article  PubMed  CAS  Google Scholar 

  54. Ma K, Simantov R, Zhang JC, Silverstein R, Hajjar KA, McCrae KR. High affinity binding of beta 2-glycoprotein I to human endothelial cells is mediated by annexin II. J Biol Chem 2000;275:15541–15548.

    Article  PubMed  CAS  Google Scholar 

  55. Shi T, Iverson GM, Qi JC, Cockerill KA, et al. Beta 2-Glycoprotein I binds factor XI and inhibits its activation by thrombin and factor XIIa: loss of inhibition by clipped beta 2-glycoprotein I. Proc Natl Acad Sci U S A 2004;101:3939–3944.

    Article  PubMed  CAS  Google Scholar 

  56. Hunt JE, Simpson RJ, Krilis SA. Identification of a region of beta 2-glycoprotein I critical for lipid binding and anti-cardiolipin antibody cofactor activity. Proc Natl Acad Sci U S A 1993;90:2141–2145.

    Article  PubMed  CAS  Google Scholar 

  57. Matsuura E, Inagaki J, Kasahara H, et al. Proteolytic cleavage of beta(2)-glycoprotein I: reduction of antigenicity and the structural relationship. Int Immunol 2000;12:1183–1192.

    Article  PubMed  CAS  Google Scholar 

  58. Ohkura N, Hagihara Y, Yoshimura T, Goto Y, Kato H. Plasmin can reduce the function of human beta2 glycoprotein I by cleaving domain V into a nicked form. Blood 1998;91:4173–4179.

    PubMed  CAS  Google Scholar 

  59. Horbach DA, van Oort E, Lisman T, Meijers JC, Derksen RH, de Groot PG. Beta2-glycoprotein I is proteolytically cleaved in vivo upon activation of fibrinolysis. Thromb Haemost 1999;81:87–95.

    PubMed  CAS  Google Scholar 

  60. Itoh Y, Inuzuka K, Kohno I, et al. Highly increased plasma concentrations of the nicked form of beta(2) glycoprotein I in patients with leukemia and with lupus anticoagulant: measurement with a monoclonal antibody specific for a nicked form of domain V. J Biochem (Tokyo) 2000;128:1017–1024.

    PubMed  CAS  Google Scholar 

  61. Yasuda S, Atsumi T, Ieko M, et al. Nicked beta2-glycoprotein I: a marker of cerebral infarct and a novel role in the negative feedback pathway of extrinsic fibrinolysis. Blood 2004;103:3766–3772.

    Article  PubMed  CAS  Google Scholar 

  62. Rouy D, Koschinsky ML, Fleury V, Chapman J, Angles-Cano E. Apolipoprotein(a) and plasminogen interactions with fibrin: a study with recombinant apolipoprotein(a) and isolated plasminogen fragments. Biochemistry 1992;31:6333–6339.

    Article  PubMed  CAS  Google Scholar 

  63. Rantapaa-Dahlqvist S, Wallberg-Jonsson S, Dahlen G. Lipoprotein (a), lipids, and lipoproteins in patients with rheumatoid arthritis. Ann Rheum Dis 1991;50:366–368.

    PubMed  CAS  Google Scholar 

  64. Lotz H, Salabe GB. Lipoprotein(a) increase associated with thyroid autoimmunity. Eur J Endocrinol 1997;136:87–91.

    Article  PubMed  CAS  Google Scholar 

  65. Seriolo B, Accardo S, Fasciolo D, Sulli A, Bertolini S, Cutolo M. Lipoprotein (a) and anticardiolipin antibodies as risk factors for vascular disease in rheumatoid arthritis. Thromb Haemost 1995;74:799–800.

    PubMed  CAS  Google Scholar 

  66. Matsuda J, Gotoh M, Gohchi K, Saitoh N, Tsukamoto M. Serum lipoprotein(a) level is increased in patients with systemic lupus erythematosus irrespective of positivity of antiphospholipid antibodies. Thromb Res 1994;73:83–84.

    Article  PubMed  CAS  Google Scholar 

  67. Kawai S, Mizushima Y, Kaburaki J. Increased serum lipoprotein(a) levels in systemic lupus erythematosus with myocardial and cerebral infarctions. J Rheumatol 1995;22:1210–1211.

    PubMed  CAS  Google Scholar 

  68. Yamazaki M, Asakura H, Jokaji H, et al. Plasma levels of lipoprotein(a) are elevated in patients with the antiphospholipid antibody syndrome. Thromb Haemost 1994;71:424–427.

    PubMed  CAS  Google Scholar 

  69. Borba EF, Santos RD, Bonfa E, et al. Lipoprotein(a) levels in systemic lupus erythematosus. J Rheumatol 1994;21:220–223.

    PubMed  CAS  Google Scholar 

  70. Levy PJ, Cooper CF, Gonzalez MF. Massive lower extremity arterial thrombosis and acute hepatic insufficiency in a young adult with premature atherosclerosis associated with hyperlipoprotein(a)emia and antiphospholipid syndrome. A case report. Angiology 1995;46:853–858.

    Article  PubMed  CAS  Google Scholar 

  71. Atsumi T, Khamashta MA, Andujar C, et al. Elevated plasma lipoprotein(a) level and its association with impaired fibrinolysis in patients with antiphospholipid syndrome. J Rheumatol 1998;25:69–73.

    PubMed  CAS  Google Scholar 

  72. Okawa-Takatsuji M, Aotsuka S, Sumiya M, Ohta H, Kawakami M, Sakurabayashi I. Clinical significance of the serum lipoprotein(a) level in patients with systemic lupus erythematosus: its elevation during disease flare. Clin Exp Rheumatol 1996;14:531–536.

    PubMed  CAS  Google Scholar 

  73. Kochl S, Fresser F, Lobentanz E, Baier G, Utermann G. Novel interaction of apolipoprotein(a) with beta-2 glycoprotein I mediated by the kringle IV domain. Blood 1997;90:1482–1489.

    PubMed  CAS  Google Scholar 

  74. Balasubramanian K, Schroit AJ. Characterization of phosphatidylserine-dependent beta2-glycoprotein I macrophage interactions. Implications for apoptotic cell clearance by phagocytes. J Biol Chem 1998;273:29272–29277.

    Article  PubMed  CAS  Google Scholar 

  75. O’Mullane MJ, Baker MS. Loss of cell viability dramatically elevates cell surface plasminogen binding and activation. Exp Cell Res 1998;242:153–164.

    Article  PubMed  CAS  Google Scholar 

  76. Witztum JL, Horkko S. The role of oxidized LDL in atherogenesis: immunological response and antiphospholipid antibodies. Ann N Y Acad Sci 1997;811:88–96; discussion 96–99.

    PubMed  CAS  Google Scholar 

  77. Bouma BN, von dem Borne PA, Meijers JC. Factor XI and protection of the fibrin clot against lysis — a role for the intrinsic pathway of coagulation in fibrinolysis. Thromb Haemost 1998;80:24–27.

    PubMed  CAS  Google Scholar 

  78. Angles-Cano E, Balaton A, Le Bonniec B, Genot E, Elion J, Sultan Y. Production of monoclonal antibodies to the high fibrin-affinity, tissue-type plasminogen activator of human plasma. Demonstration of its endothelial origin by immunolocalization. Blood 1985;66:913–920.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag London Limited

About this chapter

Cite this chapter

Anglés-Cano, E. (2006). Plasminogen Activation, Fibrinolysis, and Cell Proteolytic Activity in Antiphospholipid Syndrome. In: Khamashta, M.A. (eds) Hughes Syndrome. Springer, London. https://doi.org/10.1007/1-84628-009-5_37

Download citation

  • DOI: https://doi.org/10.1007/1-84628-009-5_37

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-85233-873-2

  • Online ISBN: 978-1-84628-009-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics