Skip to main content

Neuroanesthesia

  • Chapter
Neurosurgery

Part of the book series: Springer Specialist Surgery Series ((SPECIALIST))

  • 3205 Accesses

Abstract

The basis of general anesthesia is to establish the “triad” of hypnosis, muscle relaxation and suppression of sympathetic reflexes. This, together with manipulation of mechanical ventilation, fluid therapy, temperature and the circulation by the use of anesthetic and vasoactive drugs, can produce the required operating conditions for complex neurosurgery.

Most intravenous anesthetics decrease cerebral metabolism and blood flow and tend to have a cerebral protective effect and decrease intracranial pressure. The inhalational agents are all cerebral vasodilators that can be offset by the induction of hypocapnia through to hyperventilation. The overall effect on cerebral blood flow (CBF) depends on a balance between the concentration of the inhalational agent and the degree of hyperventilation.

Moderate hyperventilation reduces CBF and brain volume. Extreme hyperventilation may be associated with critical reduction in flow to compromised areas and focal ischemia. It is likely that barbiturates offer some protection for the brain against ischemia, but there is evidence that mild hypothermia has a cerebral protective effect that exceeds that of the barbiturates and which is out of proportion to the degree to which the cerebral metabolic rate is lowered.

The induction of general anesthesia depresses normal protective reflexes, and patients are at risk of aspiration of gastric contents. Those with raised intracranial pressure or who have suffered recent trauma causing vomiting are at particular risk.

Manipulation of the blood pressure may facilitate some procedures (e.g. the induction of hypotension during aneurysm surgery). Patients must be appropriately monitored and the risks of the failure of normal autoregulation of the cerebral circulation in patients with cerebral vasospasm must be considered. Careful monitoring control of the arterial pressure is also required where there is potential for cord ischemia.

A significant number of patients suffer moderate or severe pain after craniotomy. Morphine appears to be a safe analgesic and is more effective than codeine in postcraniotomy patients.

Management of the multiply injured patient must initially focus upon the ABC (airway, breathing and circulation) of basic life support.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Mayberg TS, Lam AM, Matta BF, Domino KB, Winn HR. Ketamine does not increase cerebral blood flow velocity or intracranial pressure during isoflurane/nitrous oxide anesthesia in patients undergoing craniotomy. Anesth Analg 1995;81:84–9.

    Article  PubMed  CAS  Google Scholar 

  2. Reinstrup P, Ryding E, Algotsson L, Messeter K, Asgeirsson B, Uski T. Distribution of cerebral blood flow during anesthesia with isoflurane or halothane in humans. Anesthesiology 1995;82:359–66.

    Article  PubMed  CAS  Google Scholar 

  3. Cho S, Fujigaki T, Uchiyama Y, Fukusaki M, Shibata O, Sumikawa K. Effects of sevoflurane with and without nitrous oxide on human cerebral circulation. Transcranial Doppler study. Anesthesiology 1996;85:755–60.

    Article  PubMed  CAS  Google Scholar 

  4. Algotsson L, Messeter K, Rosen I, Holmin T. Effects of nitrous oxide on cerebral haemodynamics and metabolism during isoflurane anesthesia in man. Acta Anaesthesiol Scand 1992;36:46–52.

    PubMed  CAS  Google Scholar 

  5. Marsh ML, Dunlop BJ, Shapiro HM. Succinylcholine: intracranial pressure effects in neurosurgical patients. Anesth Analg 1980;59:550–1.

    Article  Google Scholar 

  6. Stirt J, Grosslight K, Bedford R, Vollmer D. ‘Defasciculation’ with metocurine prevents succinylcholine-induced increases in intracranial pressure. Anesthesiology 1987;53:50–3.

    Article  Google Scholar 

  7. Boyd AH, Eastwood NB, Parker CJ, Hunter JM. Comparison of the pharmacodynamics and pharmacokinetics of a cis-atracurium (51W89) or atracurium in critically ill patients undergoing mechanical ventilation in an intensive care unit. Br J Anaesth 1996;76:382–8.

    PubMed  CAS  Google Scholar 

  8. Rosow C. Remifentanil: a unique opioid analgesic. Anesthesiology 1993;79:875–6.

    Article  PubMed  CAS  Google Scholar 

  9. Estilo A, Cottrell JE. Naloxone hypertension and ruptured cerebral aneurysm. Anesthesiology 1981;54:352.

    Article  PubMed  CAS  Google Scholar 

  10. Baskin DS, Hosobuchi Y. Naloxone reversal of ischemic neurological deficits in man. Lancet 1981;2:272.

    Article  PubMed  CAS  Google Scholar 

  11. Porter JM, Pidgeon C, Cunningham AJ. The sitting position in neurosurgery: a critical appraisal. Br J Anaesth 1999;82:117–28.

    PubMed  CAS  Google Scholar 

  12. Kelleher A, Mackersie A. Cardiac arrest and resuscitation of a six month old achondroplastic baby undergoing neurosurgery in the prone position. Anesth Analg 1995;50:348–50.

    CAS  Google Scholar 

  13. Tung A. Indications for mechanical ventilation. Int Anesthesiol Clin 1997;35:1–17.

    Article  PubMed  CAS  Google Scholar 

  14. Ravussin P, de Tribolet N, Boulard G. Neuroanésthesie. Quelques aspects nouveaux. Neurochirurgie 1993;39:145–8.

    PubMed  CAS  Google Scholar 

  15. Cheng MA, Theard MA, Tempelhof R. Intravenous agents and intraoperative neuroprotection. Beyond barbiturates. Crit Care Clin 1997;13:185–99.

    Article  PubMed  CAS  Google Scholar 

  16. Warner DS, Zhou JG, Ramani R, Todd MM. Reversible focal ischemia in the rat: effects of halothane, isoflurane, and methohexital anesthesia. J Cereb Blood Flow Metab 1991;11:794–802.

    PubMed  CAS  Google Scholar 

  17. Stone JG, Young WL, Marans ZS, Solomon RA, Smith CR, Jamdar SC et al. Consequences of electroencephalographic-suppressive doses of propofol in conjunction with deep hypothermic circulatory arrest. Anesthesiology 1996;85:497–501.

    Article  PubMed  CAS  Google Scholar 

  18. Nemoto EM, Klementavicius R, Melick JA, Yonas H. Suppression of cerebral metabolic rate for oxygen (CMRO2) by mild hypothermia compared with thiopental. J Neurosurg Anesthesiol 1996;8:52–9.

    PubMed  CAS  Google Scholar 

  19. Kouchoukos NT, Daily BB, Wareing TH, Murphy SF. Hypothermic circulatory arrest for cerebral protection during combined carotid and cardiac surgery in patients with bilateral carotid artery disease. Ann Surg 1994;21:699–705.

    Article  Google Scholar 

  20. Fessatidis IT, Thomas VL, Shore DF, Sedgwick ME, Hunt RH, Weller RO. Brain damage after profoundly hypothermic circulatory arrest: correlations between neurophysiological and neuropathological findings. An experimental study in vertebrates. J Thorac Cardiovasc Surg 1993;106:32–41.

    PubMed  CAS  Google Scholar 

  21. Stamford J. Beyond NMDA antagonists: looking to the future of neuroprotection. In: Stamford J, Strunin L, editors. Neuroprotection. London: Baillière Tindall, 1996;581–98.

    Google Scholar 

  22. Rowbotham DJ. Current management of postoperative nausea and vomiting. Br J Anaesth 1992;69:46S–59S.

    Article  PubMed  CAS  Google Scholar 

  23. Goldsack C, Scuplak SM, Smith M. A double-blind comparison of codeine and morphine for postoperative analgesia following intracranial surgery. Anesthesia 51:1996;1029–32.

    Article  CAS  Google Scholar 

  24. Cashman J, McAnulty G. Nonsteroidal anti-inflammatory drugs in perisurgical pain management. Mechanisms of action and rationale for optimum use. Drugs 1995;49:51–70.

    Article  PubMed  CAS  Google Scholar 

  25. Leon JE, Bissonnette B. Transcranial Doppler sonography: nitrous oxide and cerebral blood flow velocity in children. Can J Anaesth 1991;38:974–9.

    PubMed  CAS  Google Scholar 

  26. Clayton DG, O’Donoghue BM, Stevens JE, Savage PE. Cardiovascular response during cerebral angiography under general and local anesthesia. Anesthesia 1989;44:599–602.

    Article  CAS  Google Scholar 

  27. Ferguson GG. The rationale for controlled hypotension. Int Anesthesiol Clin 1982;28:89–93.

    Article  Google Scholar 

  28. Moss E, Dearden NM, Berridge JC. Effects of changes in mean arterial pressure on SjO2 during cerebral aneurysm surgery. Br J Anaesth 1995;75:527–30.

    PubMed  CAS  Google Scholar 

  29. Bukht D, Lanford R. Airway obstruction after surgery in the neck. Anesthesia 1983;38(4):389–90.

    Article  CAS  Google Scholar 

  30. Rosner MJ, Rosner SD, Johnson AH. Cerebral perfusion pressure: management protocol and clinical results. J Neurosurg 1995;83:949–62.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag London Limited

About this chapter

Cite this chapter

Kraayenbrink, M., McAnulty, G. (2005). Neuroanesthesia. In: Moore, A.J., Newell, D.W. (eds) Neurosurgery. Springer Specialist Surgery Series. Springer, London. https://doi.org/10.1007/1-84628-051-6_4

Download citation

  • DOI: https://doi.org/10.1007/1-84628-051-6_4

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-85233-522-9

  • Online ISBN: 978-1-84628-051-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics