Skip to main content

New Generation of Catalyst Layers for PEMFCs Based on Carbon Aerogel Supported Pt Catalyst (CASPC)

  • Chapter
Fuel Cell Technology

Part of the book series: Engineering Materials and Processes ((EMP))

Abstract

The mass production of PEMFC power generators requires a price reduction and, thus, a decrease in the amount of noble metals present in the cathode and anode catalyst layers. Automotive, residential, military, and small scale applications require PEMFC stacks with a Pt-specific power density of at least 0.2 gPt/kW at cell voltages of about 0.65 V. However, existing PEMFC performance corresponds to approximately 0.85-1.1 g Pt/kW. Thus, at least a five-fold reduction of the amount of noble metal in the PEMFC catalyst layer is required for large scale manufacturing [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

7.5 References

  1. Gasteiger H A, Kocha S S, Sompalli B and Wagner F T. Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs. Applied Catalysis B: Environmental, 2005;56:9–35.

    Article  Google Scholar 

  2. Moreno-Castilla C and Maldonado-Hódar F J. Carbon aerogels for catalysis applications: An overview. Carbon, 2005;4(3):455–465.

    Article  Google Scholar 

  3. Wei Y-Z, Fang B, Iwasa S and Kumagai M. A novel electrode material for electric double-layer capacitors, Journal of Power Sources, 2005;141(2):386–391.

    Article  Google Scholar 

  4. Maldonado-Hódar F J, Moreno-Castilla C and Pérez-Cadenas A F. Catalytic combustion of toluene on platinum-containing monolithic carbon aerogels. Applied Catalysis B: Environmental, 2004;54(4):217–224.

    Article  Google Scholar 

  5. Baker W S, Long J W, Stroud R M and Rolison D R. Sulfur-functionalized carbon aerogels: a new approach for loading high-surface-area electrode nanoarchitectures with precious metal catalysts. Journal of Non-Crystalline Solids, 2004;350(15):80–87.

    Article  Google Scholar 

  6. Marie J, Berthon-Fabry S, Achard P, Chatenet M, Pradourat A and Chainet E. Highly dispersed platinum on carbon aerogels as supported catalysts for PEM fuel cellelectrodes: comparison of two different synthesis paths. Journal of Non-Crystalline Solids, 2004;350(15):88–96.

    Article  Google Scholar 

  7. Smirnova A, Dong X, Hara H, Vasiliev A, Sammes N, Novel carbon aerogel-supported catalysts for PEMFC application. International Journal of Hydrogen Energy, 2005;30:149–158.

    Article  Google Scholar 

  8. Saquing C D, Kang D, Aindow M and Erkey C. Investigation of the supercritical deposition of platinum nanoparticles into carbon aerogels. Microporous and Mesoporous Materials, 2005;80(1–3):11–23.

    Article  Google Scholar 

  9. Ihonen J, Jaouen F, Lindbergh G, Lundblad A, and Sundholm G. Investigation of masstransport limitations in the solid polymer fuel cell cathode. Mathematical model. J. Electrochem. Soc. 2002;149(4):A437–A447.

    Article  Google Scholar 

  10. Ihonen J, Jaouen F, Lindbergh G, Lundblad A, and Sundholm G. Investigation of Mass-Transport Limitations in the Solid Polymer Fuel Cell Cathode. Experimental. J. Electrochem. Soc. 2002;149(4):A448–A454.

    Article  Google Scholar 

  11. Uchida M, Fukuoka Yu, Sugawara Ya, Eda N, and Ohta A. Effects of microstructure of carbon support in the catalyst layer on the performance of polymer electrolyte fuel cells. J. Electrochem. Soc. 1996; 143: 2245–2252.

    Article  Google Scholar 

  12. Perry M.L., Newman J, and Cairns J. Mass transport in gas-diffusion electrodes: A diagnostic tool for fuel cell cathodes. J. Electrochem. Soc. 1998;145:5–15.

    Article  Google Scholar 

  13. Broka K, Ekdunge P. Modelling the PEM fuel cell cathode. J. Appl. Electrochem, 1997;27:281–289.

    Article  Google Scholar 

  14. Broka K, Ekdunge P. Oxygen and hydrogen permeation properties and water uptake of Nafion® 117 membrane and recast film for PEM fuel cell.J. Appl. Electrochem, 1997;27(2):117–123.

    Article  Google Scholar 

  15. Sasikumar G, Ihm J W and Ryu H. Dependence of optimum Nafion content in catalyst layer on platinum loading. Journal of Power Sources, 2004;132:11–17.

    Article  Google Scholar 

  16. Gamburzev S and Appleby A J. Recent progress in performance improvement of the proton exchange membrane fuel cell (PEMFC). J. Power Sources, 2002;107:5–12.

    Article  Google Scholar 

  17. Siroma Z, Sasakura T, Yasuda K, Azuma M, Miyazaki Y, Effects of ionomer content on mass transport in gas diffusion electrodes for proton exchange membrane fuel cells. J. Electroanal.Chem., 2003;546:73–78.

    Article  Google Scholar 

  18. Qi Z and Kaufman A. Low Pt loading high performance cathodes for PEM fuel cells. J. Power Sources, 2003;107:37–43.

    Article  Google Scholar 

  19. Lee S J, Mukerjee S, McBreen J, Rho Y W, Kho Y T and Lee T H. Effects of Nafion impregnation on performances of PEMFC electrodes. Electrochimica Acta, 1998;43(24):3693–3701.

    Article  Google Scholar 

  20. J. M. Song, S. Y. Cha and W. M. Lee, Optimal composition of polymer electrolyte fuel cell electrodes determined by the AC impedance method. J. Power Sources, 2001;94(1):78–84.

    Article  Google Scholar 

  21. Uribe FA and Zawodzinski TA. A study of polymer electrolyte fuel cell performance at high voltages. Dependence on cathode catalyst layer composition and on voltage conditioning. Electrochimica Acta, 2002;47( 22–23): 3799–3806.

    Article  Google Scholar 

  22. Litster S and McLean G. PEM fuel cell electrodes. J. Power Sources, 2004;130(1–2):61–76.

    Article  Google Scholar 

  23. Haile S M. Fuel cell materials and components. Acta Materialia, 2003; 51(19):5981–6000.

    Article  Google Scholar 

  24. Ch. Song, Fuel processing for low-temperature and high-temperature fuel cells: Challenges, and opportunities for sustainable development in the 21st century, Catalysis Today, 2002;77(1–2):17–49.

    Article  Google Scholar 

  25. Mehta V, Cooper JS. Review and analysis of PEM fuel design and manufacturing. J. Power Sources, 2003;114:32–53.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag London Limited

About this chapter

Cite this chapter

Smirnova, A., Dong, X., Hara, H., Sammes, N.M. (2006). New Generation of Catalyst Layers for PEMFCs Based on Carbon Aerogel Supported Pt Catalyst (CASPC). In: Sammes, N. (eds) Fuel Cell Technology. Engineering Materials and Processes. Springer, London. https://doi.org/10.1007/1-84628-207-1_7

Download citation

  • DOI: https://doi.org/10.1007/1-84628-207-1_7

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-85233-974-6

  • Online ISBN: 978-1-84628-207-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics