Skip to main content

Mid-infrared Quantum Dot Photodetectors

  • Chapter
Mid-infrared Semiconductor Optoelectronics

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 118))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Piotrowski J and Gawron W. Ultimate performance of infrared photodetectors and figure of merit of detector material. Infrared Physics & Technology 1997; 38: 63–8

    Article  ADS  Google Scholar 

  2. Norton PR. Status of infrared detectors. SPIE Proceedings 1998; 3379: 102–14

    Article  ADS  Google Scholar 

  3. Rogalski A. Assessment of HgCdTe photodiodes and quantum well infrared photoconductors for long wavelength focal plane arrays. Infrared Physics & Technology 1999; 40: 279–94

    Article  ADS  Google Scholar 

  4. Bajaj J. State-of-the-art HgCdTe infrared devices. SPIE Proceedings 2000; 3948: 42–54

    Article  ADS  Google Scholar 

  5. Reine MB. Review of HgCdTe photodiodes for IR detection. SPIE Proceedings 2000; 4028: 320–30

    Article  ADS  Google Scholar 

  6. Baker IM and Maxey CD. Summary of HgCdTe 2D array technology in the UK. Journal of Electronic Materials 2001; 30: 682–9

    Article  ADS  Google Scholar 

  7. Varesi JB, Bornfreund RE, Childs AC et al.. Fabrication of high-performance large-format MWIR focal plane arrays from MBE-grown HgCdTe on 4″ silicon substrates. Journal of Electronic Materials 2001; 30: 566–73

    Article  ADS  Google Scholar 

  8. Levine BF. Quantum-well infrared photodetectors. Journal of Applied Physics 1993; 74: R1–R81

    Article  ADS  Google Scholar 

  9. Gunapala SD and Bandara KMSV: Homojunction and Quantum-Well Infrared Detectors. In: MH Francombe, JL Vossen (ed). Academic Press, San Diego, 1995, pp.113–237

    Google Scholar 

  10. Gunapala SD, Bandara SV, Singh A et al.. 640x 486 long-wavelength two-color GaAs/AlGaAs quantum well infrared photodetector (QWIP) focal plane array camera. IEEE Transactions on Electron Devices 2000; 47: 963–71

    Article  ADS  Google Scholar 

  11. Pan JL and Jr. CG F. Theory, fabrication, and characterization of quantum well infrared photodetectors. Material Science and Engineering. R, Reports: a review journal 2000; 28: 65–147

    Google Scholar 

  12. Tidrow MZ. Device physics and state-of-the-art of quantum well infrared photodetectors and arrays. Material Science and Engineering B 2000; 74: 45–51

    Article  Google Scholar 

  13. Phillips J, Bhattacharya P, Kennerly SW, Beekman DW and Dutta M. Self-assembled InAs-GaAs quantum-dot intersubband detectors. IEEE Journal of Quantum Electronics 1999; 35: 936–43

    Article  ADS  Google Scholar 

  14. Liu HC, Gao M, McCafferey J, Wasilewski ZR and Fafard S. Quantum dot infrared photodetectors. Applied Physics Letters 2001; 78: 79–81

    Article  ADS  Google Scholar 

  15. Tang S-F, Lin S-Y and Lee S-C. Near-room-temperature operation of an InAs/GaAs quantum-dot infrared photodetector. Applied Physics Letters 2001; 78: 2428–30

    Article  ADS  Google Scholar 

  16. Wang SY, Lin SD, Wu HW and Lee CP. Low dark current quantum-dot infrared photodetectors with an AlGaAs current blocking layer. Applied Physics Letters 2001; 78: 1023–5

    Article  ADS  Google Scholar 

  17. Chen Z, Baklenov O, Kim ET et al.. Normal incidence InAs/AlxGa1-xAs quantum dot infrared photodetectors with undoped active region. Journal of Applied Physics 2001; 89: 4558–63

    Article  ADS  Google Scholar 

  18. Kang YH, Park J, Lee UH and Hong S. Effect of the dot size distribution on quantum dot infrared photoresponse and temperature-dependent dark current. Applied Physics Letters 2003; 82: 1099–101

    Article  ADS  Google Scholar 

  19. Krishna S, Raghavan S, Winckel Gv et al.. Two color InAs/InGaAs dots-in-a-well detector with background-limited performance at 91 K. Applied Physics Letters 2003; 82: 2574–6

    Article  ADS  Google Scholar 

  20. Ryzhii V. The theory of quantum-dot infrared phototransistors. Semiconductor Science and Technology 1996; 11: 759–65

    Article  ADS  Google Scholar 

  21. Berryman KW, Lyon SA and Segev M. Mid-infrared photoconductivity in InAs quantum dots. Applied Physics Letters 1997; 70: 1861–3

    Article  ADS  Google Scholar 

  22. Maimon S, Finkman E, Bahir G et al.. Intersublevel transitions in InAs/GaAs quantum dots infrared photodetectors. Applied Physics Letters 1998; 73: 2003–5

    Article  ADS  Google Scholar 

  23. Phillips J, Kamath K and Bhattacharya P. Far-infrared photoconductivity in sel-forganized InAs quantum dots. Applied Physics Letters 1998; 72: 2020–2

    Article  ADS  Google Scholar 

  24. Pan D, Towe E and Kennerly S. Normal-incidence intersubband (In, Ga)As/GaAs quantum dot infrared photodetectors. Applied Physics Letters 1998; 73: 1937–9

    Article  ADS  Google Scholar 

  25. Xu SJ, Chua SJ, Mei T et al.. Characteristics of InGaAs quantum dot infrared photodetectors. Applied Physics Letters 1998; 73: 3153–5

    Article  ADS  Google Scholar 

  26. Pan D, Towe E and Kennerly S. Photovoltaic quantum-dot infrared detectors. Applied Physics Letters 2000; 76: 3301–3

    Article  ADS  Google Scholar 

  27. Stiff AD, Krishna S, Bhattacharya P and Kennerly S. Normal-incidence, high-temperature, mid-infrared InAs-GaAs vertical quantum-dot infrared photodetector. IEEE Journal of Quantum Electronics 2001; 37: 1412–9

    Article  ADS  Google Scholar 

  28. Krishna S, Stiff-Roberts AD, Phillips JD, Bhattacharya P and Kennerly SW. Hot dot detectors: infrared quantum dot intersubband photodetectors are a promising technology for multiwavelength IR detection. IEEE Circuits & Devices 2002; 18: 14–24

    Article  Google Scholar 

  29. Dereniak EL and Boreman GD. Infrared Detectors and Systems. Wiley, New York, 1996

    Google Scholar 

  30. Jiang H and Singh J. Strain distribution and electronic spectra of InAs/GaAs self-assembled dots: an eight-band study. Physical Review B 1997; 56: 4696–701

    Article  ADS  Google Scholar 

  31. Keating PN. Effect of invariance requirements on the elastic strain energy of crystals with application to the diamond structure. Physical Review 1966; 145: 637–45

    Article  ADS  Google Scholar 

  32. Martin RM. Elastic properties of ZnS structure semiconductors. Physical Review B 1970; 1: 4005–11

    Article  ADS  Google Scholar 

  33. Horiguchi N, Futatsugi T, Nakata Y et al.. Quantum Dot Infrared Photodetector Using Modulation Doped InAs Self-Assembled Quantum Dots. Japanese Journal of Applied Physics 1999; 38: 2559–61

    Article  ADS  Google Scholar 

  34. Phillips J. Evaluation of the fundamental properties of quantum dot infrared detectors. Journal of Applied Physics 2002; 91: 4590–4

    Article  ADS  Google Scholar 

  35. Singh J. Electronic and Optoelectronic Properties of Semiconductor Structures. Cambridge University Press, New York, 2003

    Google Scholar 

  36. Bockelmann U and Bastard G. Phonon scattering and energy relaxation in two-, one-, and zero-dimensional electron gases. Physical Review B 1990; 42: 8947–51

    Article  ADS  Google Scholar 

  37. Benisty H, Sotomayor-Torres CM and Weisbuch C. Intrinsic mechanism for the poor luminescence properties of quantum-box systems. Physical Review B 1991; 44: 10945–8

    Article  ADS  Google Scholar 

  38. Bhattacharya P, Kamath KK, Singh J et al.. In(Ga)As/GaAs self-organized quantum dot lasers: DC and small-signal modulation properties. IEEE Transactions on Electron Devices 1999; 46: 871–83

    Article  ADS  Google Scholar 

  39. Ohnesorge B, Albrecht M, Oshinowo J and Forchel A. Rapid carrier relaxation in selfassembled InxGa1−xAs/GaAs quantum dots. Physical Review B 1996; 54: 11532–8

    Article  ADS  Google Scholar 

  40. Mukai K, Ohtsuka N, Shoji H and Sugawara M. Phonon bottleneck in self-formed InxGa1−xAs/GaAs quantum dots by electroluminescence and time-resolved photoluminescence. Physical Review B 1996; 54: R5243–R6

    Article  ADS  Google Scholar 

  41. Klotzkin D, Kamath K and Bhattacharya P. Quantum capture times at room temperature in high-speed In0.4Ga0.6As-GaAs self-organised quantum-dot lasers. IEEE Photonics Technology Letters 1997; 9: 1301–3

    Article  ADS  Google Scholar 

  42. Urayama J, Norris TB, Singh J and Bhattacharya P. Observation of phonon bottleneck in quantum dot electronic relaxation. Physical review Letters 2001; 86: 4930–3

    Article  ADS  Google Scholar 

  43. Klotzkin D and Bhattacharya P. Temperature dependence of dynamic and DC characteristics of quantum-well and quantum-dot lasers: a comparative study. Journal of Lightwave Technology 1999; 17: 1634–42

    Article  ADS  Google Scholar 

  44. Kochman B, Stiff-Roberts AD, Chakrabarti S et al.. Absorption, carrier lifetime, and gain in InAs-GaAs quantum-dot infrared photodetectors. IEEE Journal of Quantum Electronics 2003; 39: 459–67

    Article  ADS  Google Scholar 

  45. Parker EHC, ed. 1985. New York: Plenum Press

    Google Scholar 

  46. Wang PD, Torres CMS, Benisty H, Weisbuch C and Beaumont SP. Radiative recombination in GaAs-AlxGa1−xAs quantum dots. Applied Physics Letters 1992; 61: 946–8

    Article  ADS  Google Scholar 

  47. Steffen R, Koch T, Oshinowo J, Faller F and Forchel A. Photoluminescence study of deep etched InGaAs/GaAs quantum wires and dots defined by low-voltage electron beam lithography. Applied Physics Letters 1996; 68: 223–5

    Article  ADS  Google Scholar 

  48. Ueno H, Moriyasu K, Wada Y et al.. Conductance through laterally coupled quantum dots. Japanese Journal of Applied Physics 1999; 38: 332–5

    Article  ADS  Google Scholar 

  49. Goldstein L, Glas F, Marzin JY, Charasse MN and LeRoux G. Growth by molecular beam epitaxy and characterization of InAs/GaAs strained-layer superlattices. Applied Physics Letters 1985; 47: 1099–101

    Article  ADS  Google Scholar 

  50. Fujita S, Matsuda Y and Sasaki A. Blue luminescence of a ZnSe-ZnS0.1Se0.9 straine-dlayer superlattice on a GaAs substrate grown by low=pressure organometallic vapor phase epitaxy. Applied Physics Letters 1985; 47: 955–7

    Article  ADS  Google Scholar 

  51. Berger PR, Chang K, Bhattacharya PK and Singh J. A study of strain-related effects in the molecular-beam epitaxy growth of InxGa1−xAs on GaAs using reflection high-energy electron diffraction. Journal of Vacuum Science and Technology B 1987; 5: 1162–6

    Article  ADS  Google Scholar 

  52. Tabuchi M, Noda S and Sasaki A. Strain energy and critical thickness of heteroepitaxial InGaAs layers on GaAs substrate. Journal of Crystal Growth 1991; 115: 169–73

    Article  ADS  Google Scholar 

  53. Leonard D, Krishnamurthy M, Reaves CM, Denbaars SP and Petroff PM. Direct formation of quantum-sized dots from uniform coherent islands of InGaAs on GaAs surfaces. Applied Physics Letters 1993; 63: 3203–5

    Article  ADS  Google Scholar 

  54. Xie Q, Chen P, Kalburge A et al.. Realization of optically active strained InAs island quantum boxes on GaAs (100) via molecular beam epitaxy and the role of island induced strain fields. Journal of Crystal Growth 1995; 150: 357–63

    Article  Google Scholar 

  55. Bimberg D, Grundmann M and Ledentsov NN. Growth, spectroscopy, and laser application of self-ordered III-V quantum dots. Materials Research Society Bulletin 1998; 23: 31–4

    Google Scholar 

  56. Bhattacharya P, Kamath K, Phillips J and Klotzkin D. Self-organized growth of In(Ga)As/GaAs quantum dots and their opto-electronic device applications. Bulletin of Material Science 1999; 22: 519–29

    Article  Google Scholar 

  57. Stranski IN and Krastanow L. Theory of orientation separation of ionic crystals. Sitzungsberichte 1938; Abteilung IIb. 146: 797–810

    Google Scholar 

  58. Bimberg D, Grundmann M and Ledentsov NN. Quantum Dot Heterostructures. John Wiley & Sons, Chichester, 1999

    Google Scholar 

  59. Caniou J. Passive Infrared Detection: Theory and Applications. Kluwer Academic Publishers, Boston, 1999

    Google Scholar 

  60. Rogalski A. Infrared Detectors. Gordon and Breach Science Publishers, Singapore, 2000

    Google Scholar 

  61. Kim E-T, Chen Z and Madhukar A. Tailoring detection bands of InAs quantum-dot infrared photodetectors using InxGa1-xAs strain-relieving quantum wells. Applied Physics Letters 2001; 79: 3341–3

    Article  ADS  Google Scholar 

  62. Raghavan S, Rotella P, Stintz A et al.. High-responsivity, normal-incidence long-wave infrared (l=7.2mm) InAs/In0.15Ga0.85As dots-in-a-well detector. Applied Physics Letters 2002; 81: 1369–71

    Article  ADS  Google Scholar 

  63. Weber A, Gauthier-Lafaye O, Julien FH et al.. Strong normal-incidence infrared absorption in self-organized InAs/InAlAs quantum dots grown on InP(001). Applied Physics Letters 1999; 74: 413–5

    Article  ADS  Google Scholar 

  64. Kim S, Mohseni H, Erdtmann M et al.. Growth and characterization of InGaAs/InGaP quantum dots for mid-infrared photoconductive detector. Applied Physics Letters 1998; 73: 963–5

    Article  ADS  Google Scholar 

  65. Liu JL, Wu WG, Balandin A, Jin GL and Wang KL. Intersubband absorption in borondoped multiple Ge quantum dots. Applied Physics Letters 1999; 74: 185–7

    Article  ADS  Google Scholar 

  66. Boucaud P, Thanh VL, Sauvage S, DéBarre D and Bouchier D. Intraband absorption in Ge/Si self-assembled quantum dots. Applied Physics Letters 1999; 74: 401–3

    Article  ADS  Google Scholar 

  67. Liu JL, Wu WG, Balandin A et al.. Observation of inter-sub-level transitions in modulation-doped Ge quantum dots. Applied Physics Letters 1999; 75: 1745–7

    Article  ADS  Google Scholar 

  68. Yakimov AI, Dvurechenskii AV, Proskuryakov YY et al.. Normal-incidence infrared photoconductivity in Si p-i-n diode with embedded Ge self-assembled quantum dot. Applied Physics Letters 1999; 75: 1413–5

    Article  ADS  Google Scholar 

  69. Miesner C, Röthig O, Brunner K and Abstreiter G. Mid-infrared photocurrent measurements on self-assembled Ge dots in Si. Physica E 2000; 7: 146–50

    Article  ADS  Google Scholar 

  70. Yakimov AI, Dvurechenskii AV, Nikiforov AI and Proskuryakov YY. Interlevel Ge/Si quantum dot infrared photodetector. Journal of Applied Physics 2001; 89: 5676–81

    Article  ADS  Google Scholar 

  71. Jiang X, Li SS and Tidrow MZ. Investigation of a multistack voltage-tunable four-color quantum-well infrared photodetector for mid-and long-wavelength infrared detection. IEEE Journal of Quantum Electronics 1999; 35: 1685–92

    Article  ADS  Google Scholar 

  72. Li SS, Kim S-H, Moon J-H and Lee JH. A two-stack, multi-color quantum well infrared photodetector for mid-and long-wavelength infrared detection. Infrared Physics & Technology 2003; 44: 235–41

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag London Limited

About this chapter

Cite this chapter

Bhattacharya, P., Stiff-Roberts, A.D., Chakrabarti, S. (2006). Mid-infrared Quantum Dot Photodetectors. In: Krier, A. (eds) Mid-infrared Semiconductor Optoelectronics. Springer Series in Optical Sciences, vol 118. Springer, London . https://doi.org/10.1007/1-84628-209-8_15

Download citation

Publish with us

Policies and ethics