Skip to main content

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 118))

  • 2500 Accesses

4 Conclusion

In summary, the MIR-OPSL devices presented here provide a remarkable flexibility in designing for any emission wavelength in the 2.5–9.5µm ranges. A very efficient photon-to-photon conversion is maintained across this wavelength range as long as the devices are operated below ∼150K. The fact that many of the device characteristics such as the threshold power and internal efficiency appear to be wavelength independent is probably due to the fact that only the InAs layer thickness is varied by a few monolayers to traverse this large wavelength range. The much-reduced transverse divergence in low confinement devices allows for a beam that is captured with much less effort in a system application. The multi-Watt power levels that are produced are accompanied by a much-improved lateral beam quality, and consequently result in very high brightness levels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Le HQ, Turner GW, Ochoa JR, IEEE Photonics Technol. Lett. 1998; 10: 663–665.

    Article  ADS  Google Scholar 

  2. Biefeld RM, Phillips JD, Kurtz SR, J. Crystal Growth 2000; 211: 400–404.

    Article  ADS  Google Scholar 

  3. Kellermann K, Zimin D, Alchalabi K, Gasser P, Pikhtin NA, Zogg H, J. Applied Physics 2003; 94: 7053–7058.

    Article  ADS  Google Scholar 

  4. Springholz G, Schwarzl T, Heiss W, Bauer G, Aigle M, Pascher H, Vavra I, Applied Physics Letters 2001; 79: 1225–1227.

    Article  ADS  Google Scholar 

  5. Felix CL, Bewley WW, Vurgaftman I, et al. Appplied Optics 2001; 40: 806–811.

    Article  ADS  Google Scholar 

  6. Malin JI, Felix CL, Meyer JR, et al. Electronics Letters 1996; 32: 1593–1595.

    Article  Google Scholar 

  7. Kaspi R, Ongstad A, Moeller C, Dente GC, Chavez J, Tilton ML, Gianardi D, Applied Physics Letters 2001; 79: 302–304.

    Article  ADS  Google Scholar 

  8. Felix CL, Bewley WW, Olafsen LJ, IEEE Photonics Technol. Lett. 1999; 11:964–966.

    Article  ADS  Google Scholar 

  9. Le HQ, Turner GW, Ochoa JR, Electronics Letters 1996; 32: 2359–2360.

    Article  Google Scholar 

  10. Bewley WW, Felix CL, Aifer EH, et al. Applied Physics Letters 1998; 73: 3383–3835.

    Article  Google Scholar 

  11. Bewley WW, Felix CL, Vurgaftman I, et al, Applied Physics Letters 1999; 74: 1075–1077.

    Article  ADS  Google Scholar 

  12. Vurgaftman I, Bewley WW, Canedy CL, et al. IEE Proceedings Optoelectronics 2003;150:322–326.

    Article  Google Scholar 

  13. Kurtz SR, Allerman AA, Biefeld RM, Applied Physics Letters 1997; 70: 3188 3190.

    Article  Google Scholar 

  14. Le HQ, Lin CH, Pei SS, Applied Physics Letters 1998; 72: 3434–3436.

    Article  ADS  Google Scholar 

  15. Bewley WW, Kim CS, Kim M, et al. Applied Physics Letters 2003; 83: 5383–5385.

    Article  ADS  Google Scholar 

  16. Goyal AK, Turner, GW, Choi HK, Foti PJ, Manfra MJ, Fan TY, Sanchez A, LEOS 2000 IEEE Annual Meeting Conference Proceedings, 2000; 1: 249–250.

    Article  Google Scholar 

  17. Goodhue WD, Le HQ, DiCecca S, J. Vacuum Science and Technol. B 1993; 11: 948–951.

    Article  ADS  Google Scholar 

  18. Le HQ, Goodhue WD, DiCecca S, Applied Physics Letters 1992; 60: 1280–1282.

    Article  ADS  Google Scholar 

  19. Le HQ, Turner GW, Eglash SJ, Choi HK, Coppeta DA, Applied Physics Letters 1994;64:152–154.

    Article  ADS  Google Scholar 

  20. Turner GW, Choi HK, Le HQ, J. Vacuum Science and Technol B 1995; 13: 699–701.

    Article  ADS  Google Scholar 

  21. Bewley WW, Felix CL, Vurgaftman I, Stokes DW, Meyer JR, Lee H, Martinelli RU, IEEE Photonics Technol. Lett. 2000; 12:477–479.

    Article  ADS  Google Scholar 

  22. Felix CL, Bewley WW, Vurgaftman I, Olafsen LJ, Stokes DW, Meyer JR, Yang MJ, Applied Physics Letters 1999; 75: 2876–2878.

    Article  ADS  Google Scholar 

  23. Munoz M, Wei K, Pollak FH, Freeouf JL, Wang CA, Charache GW, Journal of Applied Physics 2000; 87: 1780–1787.

    Article  ADS  Google Scholar 

  24. Kaspi R, Ongstad A, Dente GC, Chavez J, Tilton ML, Gianardi D, Applied Physics Letters 2002; 81: 406–408.

    Article  ADS  Google Scholar 

  25. Ongstad AP, Kaspi R, Moeller CE, Tilton ML, Chavez JR, Dente GC, Journal of Applied Physics 2004; 95: 1619–1624.

    Article  ADS  Google Scholar 

  26. Meyer JR, Hofman CA, Bartoli FJ, Ram-Mohan LR, Applied Physics Letters 1995; 67: 757–759.

    Article  ADS  Google Scholar 

  27. Smith DL, Mailhiot C, Reviews of Modern Physics 1990; 62: 173–234.

    Article  ADS  Google Scholar 

  28. Dente GC, Tilton ML, Journal of Applied Physics 1999; 86: 1420–1429.

    Article  ADS  Google Scholar 

  29. Dente GC, Tilton ML, Physical Review B 2002; 66: 165307

    Article  ADS  Google Scholar 

  30. Ackley DE, IEEE Journal of Quantum Electronics 1982; 11:1910–1917.

    Article  ADS  Google Scholar 

  31. Choi HK, Walpole JN, Turner GW, Connors MK, Missaggia LJ, Manfra MJ,: IEEE Photonics Technol. Lett. 1998; 10: 938–940.

    Article  ADS  Google Scholar 

  32. Tilton ML, Dente GC, Paxton AH, et al. IEEE Journal of Quantum Electronics 1991; 27: 2098–2108.

    Article  ADS  Google Scholar 

  33. Dente GC, IEEE Journal of Quantum Electronics 2001; 37: 1650–1653.

    Article  ADS  Google Scholar 

  34. Suchalkin S, Westerfeld D, Donetski D, et al. Applied Physics Letters 2002; 80: 2833–2835.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag London Limited

About this chapter

Cite this chapter

Kaspi, R., Dente, G.C., Ongstad, A.P. (2006). Optically Pumped MIR Lasers. In: Krier, A. (eds) Mid-infrared Semiconductor Optoelectronics. Springer Series in Optical Sciences, vol 118. Springer, London . https://doi.org/10.1007/1-84628-209-8_9

Download citation

Publish with us

Policies and ethics