Skip to main content

An Intelligent Nanofabrication Probe for Surface Displacement/Profile Measurement

  • Chapter
Condition Monitoring and Control for Intelligent Manufacturing

Part of the book series: Springer Series in Advanced Manufacturing ((SSAM))

Abstract

This chapter describes a nanofabrication probe for surface displacement measurement and/or surface profile measurement. The probe is the combination of a fast-tool-control (FTC) cutting unit and a force sensor. The FTC cutting unit, which consists of a ring-type PZT actuator and a nanometer capacitance-type displacement sensor, is used for diamond turning of complex surface profiles. The force at the interface between the tip of the cutting tool and the surface can be detected by the force sensor with a sensitivity of 0.01 mN through employing an AC modulation technique. In the displacement/surface profile measurement mode, the surface is tracked by the tool through servo-control of the contact force by the FTCunit, in which the displacement/surface profile can be obtained from the capacitance-type displacement sensor. Probe design and evaluation are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Taniguchi, N., 1994, “The state of the art of nanotechnology for processing of ultraprecision and ultrafine products”, Precision Engineering, 16(1), pp. 5–24.

    Article  Google Scholar 

  2. Saito, T. T., 1978, “Diamond turning of optics: the past, the present, and the exciting future”, Optical Engineering, 17(6), pp. 570–573.

    Google Scholar 

  3. Krauskopf, B., 1984, “Diamond turning: reflecting demands for precision”, Manufacturing Engineering, pp. 90–100.

    Google Scholar 

  4. Moriwaki, T. and Okuda, K., 1989, “Machinability of copper in ultra-precision micro diamond cutting”, Annals of the CIRP, 38(1), pp. 115–118.

    Google Scholar 

  5. Ikais, N., Shimada, S. and Tanaka, H., 1992, “Minimum thickness of cut in micromachining”, Nanotechnology, 3, pp. 6–9.

    Article  Google Scholar 

  6. Kim, S. D., Chang, I. C. and Kim, S. W., 2002, “Microscopic topographical analysis of tool vibration effects on diamond turned optical surfaces”, Precision Engineering, 26, pp. 168–174.

    Article  Google Scholar 

  7. Kouno, K., 1984, “A fast response piezoelectric actuator for servo correction of systematic errors in precision machining”, Annals of CIRP, 33(1), pp. 369–372.

    Google Scholar 

  8. Patterson, S. R. and Magrab, E. B., 1985, “Design and testing of a fast tool servo for diamond turning”, Precision Engineering, 7(3), pp. 123–128.

    Article  Google Scholar 

  9. Dow, T. A., Miller, M. H. and Falter, P. J., 1991, “Application of a fast tool servo for diamond turning of nonrotationally symmetric surfaces”, Precision Engineering, 13(4), pp. 233–250.

    Article  Google Scholar 

  10. Fawcett, S. C. and Engelhaupt, D., 1995, “Development of Wolter I x-ray optics by diamond turning and electrochemical replication”, Precision Engineering, 17(4), pp. 290–297.

    Article  Google Scholar 

  11. Miller, M. H., Garrard, K. P., Dow, T. A. and Taylor, L. W., 1994, “A controller architecture for integrating a fast tool servo into a diamond turning machine”, Precision Engineering, 16(1), pp. 42–48.

    Article  Google Scholar 

  12. Okazaki, Y., 1998, “Fast tool servo system and its application to three dimensional fine figures”, In Proceedings of 13th ASPE Annual Meeting, pp. 100–103.

    Google Scholar 

  13. Ludwick, S. J., Chargin, D. A., Calzaretta, J. A. and Trumper, D. L., 1999, “Design of a rotary fast tool servo for ophthalmic lens fabrication”, Precision Engineering, 23(4), pp. 253–259.

    Article  Google Scholar 

  14. Drescher, J. D. and Dow, T. A., 1990, “Tool force development for diamond turning”, Precision Engineering, 12(1), pp. 29–35.

    Article  Google Scholar 

  15. Santochi, M., Dini, G., Tantussi, G. and Beghini, M., 1997, A“ sensor-integrated tool for cutting force monitoring”, Annals of CIRP, 46(1), pp. 49–52.

    Google Scholar 

  16. Gao, W., Hocken, R. J., Patten, J. A. and Lovingood, J., 2000, “Force measurement in nanomachining instruments”, Review of Scientific Instruments, 71(11), pp. 4325–4329 (2000).

    Article  Google Scholar 

  17. http://www.piezomechanik.com/.

    Google Scholar 

  18. http://www.mtiinstruments.com/.

    Google Scholar 

  19. http://www.pcb.com/.

    Google Scholar 

  20. Gao, W., Araki, T., Kiyono, S., Okazaki, Y. and Yamanaka, M., 2003, “Precision nano-fabrication and evaluation of a large area sinusoidalgrid surface for a surface encoder”, Precision Engineering, 27(3), pp. 289–298.

    Article  Google Scholar 

  21. Gao, W., Hocken, R. J., Patten, J. A., Lovingood, J. and Lucca D., 2000, “Construction and testing of a nano-machining instrument”, Precision Engineering, 24(4), pp. 320–328.

    Article  Google Scholar 

  22. Gao, W., Kudo, Y., Kiyono, S. and Patten, J. A, 2004, “An instrument for nanomachining and nanometrology of free-form surface profiles with a diamond turning machine”, Journal of Chinese Society of Mechanical Engineers, 25(5), pp. 449–456.

    Google Scholar 

  23. http://www.agilent.com/.

    Google Scholar 

  24. http://www.toshiba-machine.co.jp/.

    Google Scholar 

  25. Kiyono, S., Cai, P. and Gao, W., 1999, “An angle-based position detection method for precision machines”, JSME International Journal, 42(1), pp. 44–48.

    Google Scholar 

  26. Gao, W., Dejima, S., Shimizu, Y. and Kiyono, S., 2003, “Precision measurement of two-axis positions and tilt motions using a surface encoder”, Annals of CIRP, 52(1), pp. 435–438.

    Google Scholar 

  27. Watanabe, Y., Gao, W., Shimizu, H and Kiyono, S, 2003, “Analysis of a surface encoder in wave optics”, Key Engineering Materials, 257–258, pp. 219–224.

    Google Scholar 

  28. Gao, W., Dejima, S., Yanai, H., Katakura, K., Kiyono, S. and Tomita, Y., 2004, “A surface motor-driven planar motion stage integrated with an XYθZ surface encoder for precision positioning”, Precision Engineering, 28(3), pp. 329–337.

    Article  Google Scholar 

  29. Gao, W., Dejima, S. and Kiyono, S., 2005, “A dual-mode surface encoder for position measurement”, Sensors and Actuators A, 117(1), pp. 95–102.

    Article  Google Scholar 

  30. Dejima, S., Gao, W., Katakura, K., Kiyono, S. and Tomita, Y., 2005, “Dynamic modeling, controller design and experimental validation of a planar motion stage for precision positioning”, Precision Engineering, 29(3), pp. 263–271.

    Article  Google Scholar 

  31. Brehm, R., Dun, K. V., Teunissen, J. C. G. and J. Haisma, 1979, “Transparent singlepoint turning of optical glasses, Precision Engineering, 1, pp. 207–213.

    Article  Google Scholar 

  32. Krauskopf, B., 1984, “Reflecting demands for precision,” Manufacturing Engineering, 92(5), pp. 90–100.

    Google Scholar 

  33. Blake, P. N. and Scattergood, R. O., 1990, “Ductile-regime machining of germanium and silicon”, Journal of American Ceramic Society, 73(4), pp. 949–957.

    Article  Google Scholar 

  34. Blackle W. S. and Scattergood, R. O., 1991, “Ductile-regime machining model for diamond turning of brittle materials”, Precision Engineering, 13(2), pp. 96–103.

    Google Scholar 

  35. Morris, J. C., Callahan, D. L., Kulik, J., Patten, J. A., Scattergood, R. O., 1995, “Origins of the ductile regime in single-point diamond turning of semiconductors”, Journal of American Ceramic Society, 78(8), pp. 2015–2020.

    Article  Google Scholar 

  36. Shibata, T., Fujii, S., Makino, E. and Ikeda, M., 1996, “Ductile-regime turning mechanism of single-crystal silicon”, Precision Engineering, 18(2/3), pp. 129–137.

    Article  Google Scholar 

  37. Fang, F. Z. and Venkates, V. C., 1998, “Diamond cutting of silicon with nanometric finish”, Annals of CIRP, 47(1), pp. 45–49.

    Google Scholar 

  38. Gao, W., Hocken, R. J., Patten, J. A., Lovingood, J. and Lucca D., 2000, “Experiments using a nano-machining instruments for nano-cutting brittle materials”, Annals of CIRP, 49(1), pp. 439–442.

    Google Scholar 

  39. Patten, J. A. and Gao, W, “Extreme negative rake angle technique for single point diamond nano-cutting of silicon”, Precision Engineering, 25(2), pp. 165–167.

    Google Scholar 

  40. Patten J. A., Gao, W. and Kudo, Y., 2005, “Ductile regime nano-machining of single crystal silicon carbide,” ASME Journal of Manufacturing Science and Engineering, in press.

    Google Scholar 

  41. Whitehouse, D. J., 1976, “Some theoretical aspects of error separation techniques in surface metrology,” Journal of Physics E: Scientific Instruments, 9, pp. 531–536.

    Article  Google Scholar 

  42. Shiraishi, M., 1989, “Scope of in-process measurement, monitoring and control techniques in machining processes”, Precision Engineering, 11(1), pp. 39–47.

    Article  Google Scholar 

  43. Fan, K. C. and Chao, Y. H., 1991, “In-process dimensional control of the workpiece during turning”, Precision Engineering, 13(1), pp. 27–32.

    Article  Google Scholar 

  44. Evans, C. J., Hocken, R. J. and Estler, W. T., 1996, “Self-calibration: reversal, redundancy, error separation and ‘absolute testing’”, Annals of CIRP, 45(2), pp. 617–634.

    Google Scholar 

  45. Gao, W., Kiyono, S. and Nomura, T., 1996, “A new multi-probe method of roundness measurements”, Precision Engineering, 19(1), pp. 37–45.

    Article  Google Scholar 

  46. Uda, Y., Kohno, T. and Yazawa, T., 1996, “In-process measurement and workpiece-referred form accuracy control system (WORFAC): Application to cylindrical turning using an ordinary lathe”, Precision Engineering, 18(1), pp. 50–55.

    Article  Google Scholar 

  47. Gao, W. and Kiyono, S., 1997, “On-machine measurement of machined surface using the combined three-point method”, JSME International Journal, 40(2), pp. 253–259.

    Google Scholar 

  48. Gao, W. and Kiyono, S., 1997, “On-machine roundness measurement of cylindrical workpieces by the combined three-point method”, Measurement, 21(4), pp. 147–156.

    Article  Google Scholar 

  49. Gao, W. and Kiyono, S., 1997, “Development of an optical probe for profile measurement of mirror surfaces”, Optical Engineering, 36(12), pp. 3360–3366.

    Article  Google Scholar 

  50. Gao, W., Kiyono, S. and Sugawara, T., 1997, “High accuracy roundness measurement by a new error separation method”, Precision Engineering, 21(2/3), pp. 123–133.

    Article  Google Scholar 

  51. Nomura, T., Kamiya, K., Miyashiro, H., et al., 1998, “Shape measurements of mirror surfaces with a lateral-shearing interferometer during machine running”, Precision Engineering, 22(4), pp. 185–189.

    Article  Google Scholar 

  52. Gao, W., Yokoyama, J., Kojima, H. and Kiyono, S., 2002, “Precision measurement of cylinder straightness using a scanning multi-probe system”, Precision Engineering, 26(3), pp. 279–288.

    Google Scholar 

  53. Gao, W., Huang, P. S., Yamada, T. and Kiyono, S., 2002, “A compact and sensitive two-dimensional angle probe for flatness measurement of large silicon wafers”, Precision Engineering, 26(4), pp. 396–404.

    Article  Google Scholar 

  54. Gao, W., Kiyono, S. and Satoh, E., 2002, “Precision measurement of multi-degreeof-freedom spindle errors using two-dimensional slope sensors”, Annals of CIRP, 51(1), pp. 447–450.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag London Limited

About this chapter

Cite this chapter

Gao, W. (2006). An Intelligent Nanofabrication Probe for Surface Displacement/Profile Measurement. In: Wang, L., Gao, R.X. (eds) Condition Monitoring and Control for Intelligent Manufacturing. Springer Series in Advanced Manufacturing. Springer, London. https://doi.org/10.1007/1-84628-269-1_13

Download citation

  • DOI: https://doi.org/10.1007/1-84628-269-1_13

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84628-268-3

  • Online ISBN: 978-1-84628-269-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics